• Title/Summary/Keyword: Modern Economy

Search Result 332, Processing Time 0.017 seconds

A Servicism Model of the New Legal System (서비스주의 법제도 구조와 운용 연구)

  • Hyunsoo Kim
    • Journal of Service Research and Studies
    • /
    • v.11 no.4
    • /
    • pp.1-20
    • /
    • 2021
  • This study was conducted to derive a model of the legal system that is the basis for realizing the service economy, political administration, and social education system. Based on the experience of mankind's legal system operation in the historical era for the past 5,000 years, a legal system model that will make the future human society sustainable has been established. The problems of the current legal system were analyzed at the fundamental level. The root cause of injustice and unfairness was analyzed and a new legal system was designed. Through the legal systems of various national societies that have been attempted in the history of mankind, the structure of the legal system that is desirable for the modern society was designed. Human society, which has experienced how much good legal system has been and is being abused by human irrationality and nonsense, needs to make an effort to change the legal system paradigm itself by learning lessons from failure. This study derives the basis for a legal system that can realize justice and a fair society in the long term. It proposed a model for improving the legal system that allows human society to be happy for a long time. To this end, the fundamental role of the legal system was analyzed at the ideological level and the problems of the current legal system were presented. In addition, the problem of fundamental assumptions about human nature was analyzed and improved assumptions were presented. The structural system of the current legal system was analyzed and a new structure was proposed. In addition, a plan for the operation of a new legal system based on a new structure was suggested. The new legal system was named servicism system. This is because it is a model centered on thorough checks and balances between all opponents, not a simple linear one-dimensional legal system, but a multidimensional legal system, and because it is a viewpoint that clearly recognizes both human reason and desire. The new system is a model that reflects the confrontation between the rule of law and the non-law rule and the confrontation between the power people and the general public. A follow-up study is needed on a concrete plan for transitioning from the current legal system to a new legal system.

A Proposal of a Keyword Extraction System for Detecting Social Issues (사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안)

  • Jeong, Dami;Kim, Jaeseok;Kim, Gi-Nam;Heo, Jong-Uk;On, Byung-Won;Kang, Mijung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.1-23
    • /
    • 2013
  • To discover significant social issues such as unemployment, economy crisis, social welfare etc. that are urgent issues to be solved in a modern society, in the existing approach, researchers usually collect opinions from professional experts and scholars through either online or offline surveys. However, such a method does not seem to be effective from time to time. As usual, due to the problem of expense, a large number of survey replies are seldom gathered. In some cases, it is also hard to find out professional persons dealing with specific social issues. Thus, the sample set is often small and may have some bias. Furthermore, regarding a social issue, several experts may make totally different conclusions because each expert has his subjective point of view and different background. In this case, it is considerably hard to figure out what current social issues are and which social issues are really important. To surmount the shortcomings of the current approach, in this paper, we develop a prototype system that semi-automatically detects social issue keywords representing social issues and problems from about 1.3 million news articles issued by about 10 major domestic presses in Korea from June 2009 until July 2012. Our proposed system consists of (1) collecting and extracting texts from the collected news articles, (2) identifying only news articles related to social issues, (3) analyzing the lexical items of Korean sentences, (4) finding a set of topics regarding social keywords over time based on probabilistic topic modeling, (5) matching relevant paragraphs to a given topic, and (6) visualizing social keywords for easy understanding. In particular, we propose a novel matching algorithm relying on generative models. The goal of our proposed matching algorithm is to best match paragraphs to each topic. Technically, using a topic model such as Latent Dirichlet Allocation (LDA), we can obtain a set of topics, each of which has relevant terms and their probability values. In our problem, given a set of text documents (e.g., news articles), LDA shows a set of topic clusters, and then each topic cluster is labeled by human annotators, where each topic label stands for a social keyword. For example, suppose there is a topic (e.g., Topic1 = {(unemployment, 0.4), (layoff, 0.3), (business, 0.3)}) and then a human annotator labels "Unemployment Problem" on Topic1. In this example, it is non-trivial to understand what happened to the unemployment problem in our society. In other words, taking a look at only social keywords, we have no idea of the detailed events occurring in our society. To tackle this matter, we develop the matching algorithm that computes the probability value of a paragraph given a topic, relying on (i) topic terms and (ii) their probability values. For instance, given a set of text documents, we segment each text document to paragraphs. In the meantime, using LDA, we can extract a set of topics from the text documents. Based on our matching process, each paragraph is assigned to a topic, indicating that the paragraph best matches the topic. Finally, each topic has several best matched paragraphs. Furthermore, assuming there are a topic (e.g., Unemployment Problem) and the best matched paragraph (e.g., Up to 300 workers lost their jobs in XXX company at Seoul). In this case, we can grasp the detailed information of the social keyword such as "300 workers", "unemployment", "XXX company", and "Seoul". In addition, our system visualizes social keywords over time. Therefore, through our matching process and keyword visualization, most researchers will be able to detect social issues easily and quickly. Through this prototype system, we have detected various social issues appearing in our society and also showed effectiveness of our proposed methods according to our experimental results. Note that you can also use our proof-of-concept system in http://dslab.snu.ac.kr/demo.html.