• Title/Summary/Keyword: Moderate turbulent

Search Result 37, Processing Time 0.027 seconds

CFD-FSI simulation of vortex-induced vibrations of a circular cylinder with low mass-damping

  • Borna, Amir;Habashi, Wagdi G.;McClure, Ghyslaine;Nadarajah, Siva K.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.411-431
    • /
    • 2013
  • A computational study of vortex-induced transverse vibrations of a cylinder with low mass-damping is presented. An Arbitrary Lagrangian-Eulerian (ALE) formulation of the Unsteady Reynolds-Averaged Navier-Stokes equations (URANS), along with the Spalart-Allmaras (SA) one-equation turbulence model, are coupled conservatively with rigid body motion equations of the cylinder mounted on elastic supports in order to study the amplitude and frequency response of a freely vibrating cylinder, its flow-induced motion, Vortex Street, near-wake flow structure, and unsteady loading in a moderate range of Reynolds numbers. The time accurate response of the cylinder from rest to its limit cycle is studied to explore the effects of Reynolds number on the start of large displacements, motion amplitude, and frequency. The computational results are compared with published physical experiments and numerical studies. The maximum amplitudes of displacements computed for various Reynolds numbers are smaller than the experimental values; however, the overall agreement of the results is quite satisfactory, and the upper branch of the limit-cycle displacement amplitude vs. reduced velocity response is captured, a feature that was missed by other studies. Vortex shedding modes, lock-in phenomena, frequency response, and phase angles are also in agreement with experiments.

Imaging Diagnosis of Dilated Cardiomyopathy in a Maltese Dog

  • An, Soyon;Park, Junghyun;Mok, Jinsu;Kim, Areum;Han, Changhee;Song, Joong Hyun;Yu, Dohyeon;Hwang, Tae Sung;Lee, Hee-Chun
    • Journal of Veterinary Clinics
    • /
    • v.38 no.3
    • /
    • pp.163-168
    • /
    • 2021
  • A 6-year-old, spayed female, Maltese dog with tachypnea and dry cough was presented to Gyeongsang National University Veterinary Medical Teaching hospital. On physical examination, its respiration rate was 132 per minute. Decreased partial pressure of oxygen, partial pressure of carbon dioxide, and hyperlactatemia were found on arterial blood gas analysis. Its diastolic blood pressure was 80 mmHg. Auscultation revealed arrhythmia. Electrocardiogram revealed P pulmonale, P mitrale, and ventricular premature complexes. Thoracic radiographs revealed mild enlargement of both atrium and moderate enlargement of the left ventricular. There was also a moderate alveolar pattern in the right and caudal part of the left cranial lung lobe. Two-dimensional echocardiography showed enlargement of generalized four chambers without remarkable findings of valvular degeneration. M-mode echocardiography showed decreased left ventricular fractional shortening and enlarged left ventricular internal diameter at both end-systolic and end-diastolic. Color-flow Doppler imaging revealed eccentric turbulent flow starting below the left ventricular outflow tract and extending into the left atrium during systole. Spectral Doppler recordings revealed a high velocity flow through the mitral, tricuspid, aorta, and pulmonic regurgitation. Restrictive transmitral flow revealed high E-wave velocity, short E-wave deceleration time, and reduced A-wave velocity. There was also low ejection velocity thorough left ventricular out tract flow. Based on echocardiographic examination, dilated cardiomyopathy was the tentative diagnosis. The dog was medicated with inotropes, angiotensin converting enzyme inhibitor, and diuretics. At the 10-day following-up, the dog died suddenly. This report describes echocardiographic diagnosis and prognosis of dilated cardiomyopathy rarely reported in small breed dogs.

Multimode Boundary-Layer Transition on an Airfoil Influenced by Periodically Passing Wake under the Free-stream Turbulence (자유유동 난류 하의 주기적 통과 후류의 영향을 받는 익형 위 경계층 천이)

  • Park Tae-Choon;Jeon Woo-Pyung;Kang Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.687-690
    • /
    • 2002
  • Multimode boundary-layer transition on a NACA0012 airfoil is experimentally investigated under periodically passing wakes and the moderate level of free-stream turbulence. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The free-stream turbulence is produced by a grid upstream of the rotating cylinder, and its intensity(Tu) at the leading edge of the airfoil is $0.5\;or\;3.5\;{\%}$. The Reynolds number ($Re_c$) based on chord length (C) of the alrfoil is $2.0{\times}10^5$, and Strouhal number ($St_c$) of the passing wake is about 0.7. Time- and phase-averaged streamwise mean velocities and turbulence fluctuations are measured with a single hot-wire probe, and especially, the corresponding wall skin friction is evaluated using a computational Preston tube method. The wake-passing orientation changes pressure distribution on the airfoil in a different manner irrespective of the free-stream turbulence. Regardless of free-stream turbulence level, turbulent patches for the receding wakes propagate more rapidly than those for the approaching wake because adverse pressure gradient becomes larger. The patch under the high free-stream turbulence ($Tu=3.5{\%}$) grows more greatly in laminar-like regions compared with that under the low background turbulence ($Tu=0.5{\%}$) in laminar regions. The former, however, does not greatly change the original turbulence level in the very near-wall region while the latter does it. At further downstream, the former interacts vigorously with high environmental turbulence inside the pre-existing transitional boundary layer and gradually lose his identification, whereas the latter keep growing in the laminar boundary layer. The calmed region is more clearly observed under the lower free-stream turbulence level and for the receding wakes. The calmed region delays the breakdown further downstream and stabilizes more the boundary layer.

  • PDF

ACCRETION-JET MODEL FOR THE HARD X-ray Γ - LX CORRELATION IN BLACK HOLE X-ray BINARIES

  • YANG, QI-XIANG;XIE, FU-GUO;YUAN, FENG;ZDZIARSKI, ANDRZEJ A.;GIERLINSKI, MAREK;HO, LUIS C.;YU, ZHAOLONG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.565-568
    • /
    • 2015
  • In this work, we study the correlation between the photon index (${\Gamma}$) of the X-ray spectrum and the 2-10 keV X-ray luminosity ($L_X$) for black hole X-ray binaries (BHBs). The BHB sample is mainly from the quiescent, hard and intermediate states, with values of $L_X$ ranging from ${\sim}10^{30.5}$ to $10^{37.5}$ erg $s^{-1}$. We find that the photon index ${\Gamma}$ is positively or negatively correlated with the X-ray luminosity $L_X$, for $L_X$ above or below a critical value, ${\sim}10^{36.5}$ erg $s^{-1}$. This result is consistent with previous works. Moreover, when $L_X{\leq}{\sim}10^{33}$ erg $s^{-1}$, we found that the photon index is roughly independent of the X-ray luminosity. We interpret the above correlations in the framework of a coupled hot accretion flow - jet model. Besides, we also find that in the moderate-luminosity region, different sources may have different anti-correlation slopes, and we argue this diversity is caused by the different value of ${\delta}$, which describes the fraction of turbulent dissipation that directly heats electrons.

Experimental Investigation of Heat Transfer During Vertical Upward Flow of Supercritical CO2 in Circular Tube (초임계 이산화탄소의 수직 상향 유동에서의 관내 열전달에 관한 실험적 연구)

  • Kim, Dong Eok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.607-618
    • /
    • 2014
  • An experimental investigation of turbulent heat transfer during the vertical upward flow of supercritical $CO_2$ was conducted in a circular tube with inner diameter of 4.5 mm. The experiments were conducted at bulk fluid temperatures ranging from 29 to $115^{\circ}C$, pressures from 74.6 to 102.6 bar, local wall heat fluxes from 38 to $234kW/m^2$, and mass fluxes from 208 to $874kg/m^2s$. At moderate wall heat and low mass fluxes, the wall temperature had a noticeable peak value. For observing the buoyancy and flow acceleration effects on heat transfer, the ratios of Nusselt numbers from the experimental data and a reference correlation were compared with the $Bo^*$ and $q^+$ distributions. The flow acceleration parameter $q^+$ appropriately represented the heat transfer phenomena in the experiments. A new heat transfer correlation for the vertical upward flow of the supercritical pressure fluid was developed, and was found to agree with the experimental data with an error margin of ${\pm}30%$.

A Study on Injection Characteristics of High Temperature Fuel through Orifice Injectors (고온 연료의 오리피스 인젝터 분사특성 연구)

  • Lee, Hyung Ju;Choi, Hojin;Kim, Ildoo;Hwang, Ki-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.119-126
    • /
    • 2014
  • An experimental study was conducted to study fuel injection characteristics through plain orifice injectors when the fuel was heated to the temperature higher than its boiling point. Three injectors with different orifice diameters were used to measure the flow coefficient (${\alpha}$) for the injection pressure ranges of 3, 5, and 10 bar and the fuel temperature ranges between 50 and $270^{\circ}C$. The study showed that ${\alpha}$ decreases gradually with the fuel temperature below $180^{\circ}C$ while it drops abruptly when the temperature goes beyond $187^{\circ}C$, the boiling temperature of the fuel. The slope of ${\alpha}$ bifurcated at the boiling temperature for different injection pressures, and ${\alpha}$ decreased faster for the lower injection pressure due to the more active boiling in the injector. In addition, the larger orifice diameter had the higher ${\alpha}$ value, and ${\alpha}$ jumped at moderate temperature ranges when the injection pressure was low, implying the turbulent-laminar transition phenomena. The measured ${\alpha}$ was plotted against the cavitation number($K_c$), and the characteristics were independent of the applied pressure for small injectors when the fuel was evaporated before it was injected.

Three-dimensional Numerical Prediction on the Evolution of Nocturnal Thermal High (Tropical Night) in a Basin

  • Choi, Hyo;Kim, Jeong-Woo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.57-81
    • /
    • 1997
  • Numerical prediction of nocturnal thermal high in summer of the 1995 near Taegu city located in a basin has been carried out by a non-hydrostatic numerical model over complex terrain through one-way double nesting technique in the Z following coordinate system. Under the prevailing westerly winds, vertical turbulent fluxes of momentum and heat over mountains for daytime hours are quite strong with a large magnitude of more than $120W/\textrm{m}^2$, but a small one of $5W/\textrm{m}^2$ at the surface of the basin. Convective boundary layer (CBL) is developed with a thickness of about 600m over the ground in the lee side of Mt. Hyungje, and extends to the edge of inland at the interface of land sea in the east. Sensible heat flux near the surface of the top of the mountain is $50W/\textrm{m}^2$, but its flux in the basin is almost zero. Convergence of sensible heat flux occurs from the ground surface toward the atmosphere in the lower layer, causing the layer over the mountain to be warmed up, but no convergance of the flux over the basin results from the significant mixing of air within the CBL. As horizontal transport of sensible heat flux from the top of the mountain toward over the basin results in the continuous accumulation of heat with time, enhancing air temperature at the surface of the basin, especially Taegu city to be higher than $39.3^{\circ}C$. Since latent heat fluxes are $270W/\textrm{m}^2$ near the top of the mountain and $300W/\textrm{m}^2$ along the slope of the mountain and the basin, evaporation of water vapor from the surface of the basin is much higher than one from the mountain and then, horizontal transport of latent heat flux is from the basin toward the mountain, showing relative humidity of 65 to 75% over the mountain to be much greater than 50% to 55% in the basin. At night, sensible heat fluxes have negative values of $-120W/\textrm{m}^2$ along the slope near the top of the mountain and $-50W/\textrm{m}^2$ at the surface of the basin, which indicate gain of heat from the lower atmosphere. Nighttime radiative cooling produces a shallow nocturnal surface inversion layer with a thickness of about 100m, which is much lower than common surface inversion layer, and lifts extremely heated air masses for daytime hours, namely, a warm pool of $34^{\circ}C$ to be isolated over the ground surface in the basin. As heat transfer from the warm pool in the lower atmosphere toward the ground of the basin occurs, the air near the surface of the basin does not much cool down, resulting in the persistence of high temperature at night, called nocturnal thermal high or tropical night. High relative humidity of 75% is found at the surface of the basin under the moderate wind, while slightly low relative humidity of 60% is along the eastern slope of the high mountain, due to adiabatic heating by the srong downslope wind. Air temperature near the surface of the basin with high moisture in the evening does not get lower than that during the day and the high temperature produces nocturnal warming situation.

  • PDF