• Title/Summary/Keyword: Models, statistical

Search Result 3,041, Processing Time 0.02 seconds

Truss Model for Bar Development in Beam End Region (보 단부의 정착에 관한 트러스 모델)

  • 김대진;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.659-664
    • /
    • 1999
  • The majority of published conclusions about structural configuration effects of bond strength were based on the observed performance of test specimens and their interpretations are mostly empirical and statistical. The empirical and statistical interpretation on bond strength have to be replaced by rational models based on simple, sound and verifiable mechanical principles. It is likely that such models also represent the key to a deeper understanding of some existing experimental data on bond strength. The presented truss model is capable of explaining failure modes involving bond slip that cannot be explained by current truss model.

  • PDF

A DOUBLY ROBUSTIFIED ESTIMATING FUNCTION FOR ARCH TIME SERIES MODELS

  • Kim, Sahm;Hwang, S.Y.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.3
    • /
    • pp.387-395
    • /
    • 2007
  • We propose a doubly robustified estimating function for the estimation of parameters in the context of ARCH models. We investigate asymptotic properties of estimators obtained as solutions of robust estimating equations. A simulation study shows that robust estimator from specified doubly robustified estimating equation provides better performance than conventional robust estimators especially under heavy-tailed distributions of innovation errors.

A Study of Statistical Approach for Detection of Outliers in Network Traffic

  • Kim, Sahm-Yeong;Yun, Joo-Beom;Park, Eung-Ki
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.979-987
    • /
    • 2005
  • In this research we study conventional and new statistical methods to analyse and detect outliers in network traffic and we apply the nonlinear time series model to make better performance of detecting abnormal traffic rather the linear time series model to compare the performances of the two models.

  • PDF

PARTIAL INTRINSIC BAYES FACTOR

  • Joo Y.;Casella G.
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.3
    • /
    • pp.261-280
    • /
    • 2006
  • We have developed a new model selection criteria, the partial intrinsic Bayes factor, which is designed for cases when we select a model among a small number of candidate models. For example, we can choose only a few candidate models after exploring scatter plots. By simulation study, we have showed that PIBF performs better than AIC, BIC and GCV.

BOOTSTRAPPING GENERALIZED LINEAR MODELS WITH RANDOM REGRESSORS

  • Lee, Kee-Won;Kim, Choong-Rak;Sohn, Keon-Tae;Jeong, Kwang-Mo
    • Journal of the Korean Statistical Society
    • /
    • v.21 no.1
    • /
    • pp.70-79
    • /
    • 1992
  • The generalized linear models with random regrssors case are studied for bootstrapping. Only the natural link functions are considered. It is shown that the bootstrap approximation to the distribution of the maximum likelihood estimators is valid for almost all sample sequences. A slight extension of this model is also considered.

  • PDF

Test of Hypotheses based on LAD Estimators in Nonlinear Regression Models

  • Seung Hoe Choi
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.288-295
    • /
    • 1995
  • In this paper a hypotheses test procedure based on the least absolute deviation estimators for the unknown parameters in nonlinear regression models is investigated. The asymptotic distribution of the proposed likelihood ratio test statistic are established voth under the null hypotheses and a sequence of local alternative hypotheses. The asymptotic relative efficiency of the proposed test with classical test based on the least squares estimator is also discussed.

  • PDF

Graphical Descriptions for Hierarchical Log Linear Models

  • Hyun Jip Choi;Chong Sun Hong
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.310-319
    • /
    • 1995
  • We represent graphically the relationship of hierachical log linear models by regarding the values of the likelihood ratio statistics as the squared norm of the corresponding vectors. Right angled triangles, tetrahedrons, and modified polyhedrons are used for graphical description. We find that the angle between the two vectors depends on the coefficient of determination and the partial coefficent of determination. Thess graphical descriptions could be applied to the model selection method.

  • PDF

Sequential Test for Parameter Changes in Time Series Models

  • Lee Sangyeol;Ha Jeongcheol
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2001.11a
    • /
    • pp.185-189
    • /
    • 2001
  • In this paper, we consider the problem of testing for parameter changes in time series models based on a sequential test. Although the test procedure is well-established for the mean and variance change, a general parameter case has not been discussed in the literature. Therefore, we develop a sequential test for parameter changes in a more general framework.

  • PDF

Hierarchical Bayes Estimators of the Error Variance in Two-Way ANOVA Models

  • Chang, In Hong;Kim, Byung Hwee
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.315-324
    • /
    • 2002
  • For estimating the error variance under the relative squared error loss in two-way analysis of variance models, we provide a class of hierarchical Bayes estimators and then derive a subclass of the hierarchical Bayes estimators, each member of which dominates the best multiple of the error sum of squares which is known to be minimax. We also identify a subclass of non-minimax hierarchical Bayes estimators.

Identification of Multiple Outlying Cells in Multi-way Tables

  • Lee, Jong Cheol;Hong, Chong Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.687-698
    • /
    • 2000
  • An identification method is proposed in order to detect more than one outlying cells in multi-way contingency tables. The iterative proportional fitting method is applied to get expected values of several suspected outlying cells. Since the proposed method uses minimal sufficient statistics under quasi log-linear models, expected counts of outlying cells could be estimated under any hierarchical log-linear models. This method is an extension of the backwards-stepping method of Simonoff(1988) and requires les iteration to identify outlying cells.

  • PDF