• Title/Summary/Keyword: Models, statistical

Search Result 3,041, Processing Time 0.023 seconds

Visualizations for Matched Pairs Models Using Modified Correspondence Analysis

  • Lee, Chanyoon;Choi, Yong-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.275-284
    • /
    • 2014
  • Matched pairs are twice continuously measured data with the same categories. They can be represented as the square contingency tables. We can also consider symmetry and marginal homogeneity. Moreover, we can infer the matched pairs models; the symmetry model, the quasi-symmetry model, and the ordinal quasi-symmetry model. These inferences are involved in assumptions for special distributions. In this study, we visualize matched pairs models using modified correspondence analysis. Modified correspondence analysis can be used when square contingency tables are given; consequently, it is involved in the square and asymmetric correspondence matrix. This technique does not need assumptions for special distributions and is more helpful than the correspondence analysis to visualize matched pairs models.

Ensemble approach for improving prediction in kernel regression and classification

  • Han, Sunwoo;Hwang, Seongyun;Lee, Seokho
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.4
    • /
    • pp.355-362
    • /
    • 2016
  • Ensemble methods often help increase prediction ability in various predictive models by combining multiple weak learners and reducing the variability of the final predictive model. In this work, we demonstrate that ensemble methods also enhance the accuracy of prediction under kernel ridge regression and kernel logistic regression classification. Here we apply bagging and random forests to two kernel-based predictive models; and present the procedure of how bagging and random forests can be embedded in kernel-based predictive models. Our proposals are tested under numerous synthetic and real datasets; subsequently, they are compared with plain kernel-based predictive models and their subsampling approach. Numerical studies demonstrate that ensemble approach outperforms plain kernel-based predictive models.

Analysis of periodontal data using mixed effects models

  • Cho, Young Il;Kim, Hae-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.1
    • /
    • pp.2-7
    • /
    • 2015
  • A fundamental problem in analyzing complex multilevel-structured periodontal data is the violation of independency among the observations, which is an assumption in traditional statistical models (e.g., analysis of variance and ordinary least squares regression). In many cases, aggregation (i.e., mean or sum scores) has been employed to overcome this problem. However, the aggregation approach still exhibits certain limitations, such as a loss of power and detailed information, no cross-level relationship analysis, and the potential for creating an ecological fallacy. In order to handle multilevel-structured data appropriately, mixed effects models have been introduced and employed in dental research using periodontal data. The use of mixed effects models might account for the potential bias due to the violation of the independency assumption as well as provide accurate estimates.

Two-dimensional attention-based multi-input LSTM for time series prediction

  • Kim, Eun Been;Park, Jung Hoon;Lee, Yung-Seop;Lim, Changwon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.39-57
    • /
    • 2021
  • Time series prediction is an area of great interest to many people. Algorithms for time series prediction are widely used in many fields such as stock price, temperature, energy and weather forecast; in addtion, classical models as well as recurrent neural networks (RNNs) have been actively developed. After introducing the attention mechanism to neural network models, many new models with improved performance have been developed; in addition, models using attention twice have also recently been proposed, resulting in further performance improvements. In this paper, we consider time series prediction by introducing attention twice to an RNN model. The proposed model is a method that introduces H-attention and T-attention for output value and time step information to select useful information. We conduct experiments on stock price, temperature and energy data and confirm that the proposed model outperforms existing models.

Bayes factors for accelerated life testing models

  • Smit, Neill;Raubenheimer, Lizanne
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.513-532
    • /
    • 2022
  • In this paper, the use of Bayes factors and the deviance information criterion for model selection are compared in a Bayesian accelerated life testing setup. In Bayesian accelerated life testing, the most used tool for model comparison is the deviance information criterion. An alternative and more formal approach is to use Bayes factors to compare models. However, Bayesian accelerated life testing models with more than one stressor often have mathematically intractable posterior distributions and Markov chain Monte Carlo methods are employed to obtain posterior samples to base inference on. The computation of the marginal likelihood is challenging when working with such complex models. In this paper, methods for approximating the marginal likelihood and the application thereof in the accelerated life testing paradigm are explored for dual-stress models. A simulation study is also included, where Bayes factors using the different approximation methods and the deviance information are compared.

Tilted beta regression and beta-binomial regression models: Mean and variance modeling

  • Edilberto Cepeda-Cuervo
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.263-277
    • /
    • 2024
  • This paper proposes new parameterizations of the tilted beta binomial distribution, obtained from the combination of the binomial distribution and the tilted beta distribution, where the beta component of the mixture is parameterized as a function of their mean and variance. These new parameterized distributions include as particular cases the beta rectangular binomial and the beta binomial distributions. After that, we propose new linear regression models to deal with overdispersed binomial datasets. These new models are defined from the proposed new parameterization of the tilted beta binomial distribution, and assume regression structures for the mean and variance parameters. These new linear regression models are fitted by applying Bayesian methods and using the OpenBUGS software. The proposed regression models are fitted to a school absenteeism dataset and to the seeds germination rate according to the type seed and root.

Option pricing and profitability: A comprehensive examination of machine learning, Black-Scholes, and Monte Carlo method

  • Sojin Kim;Jimin Kim;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.5
    • /
    • pp.585-599
    • /
    • 2024
  • Options pricing remains a critical aspect of finance, dominated by traditional models such as Black-Scholes and binomial tree. However, as market dynamics become more complex, numerical methods such as Monte Carlo simulation are accommodating uncertainty and offering promising alternatives. In this paper, we examine how effective different options pricing methods, from traditional models to machine learning algorithms, are at predicting KOSPI200 option prices and maximizing investment returns. Using a dataset of 2023, we compare the performance of models over different time frames and highlight the strengths and limitations of each model. In particular, we find that machine learning models are not as good at predicting prices as traditional models but are adept at identifying undervalued options and producing significant returns. Our findings challenge existing assumptions about the relationship between forecast accuracy and investment profitability and highlight the potential of advanced methods in exploring dynamic financial environments.

Ultimate strength and strain models proposed for CFRP confined concrete cylinders

  • Berradia, Mohammed;Kassoul, Amar
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.465-481
    • /
    • 2018
  • The use of external carbon-fiber-reinforced polymer (CFRP) laminates is one of the most effective techniques existing for the confinement of circular concrete specimens. Currently, several researches have been made to develop models for predicting the ultimate conditions of this type of confinement. As most of the major existing models were developed based on limited experimental database. This paper presents the development of new confinement ultimate conditions, strength and strain models, for concrete cylinders confined with CFRP composites based on a statistical analysis of a large existing experimental database of 310 cylindrical concrete specimens wrapped with CFRP. The database is used to evaluate the performance of the proposed and major existing strength and strain models. Based on the two different statistical indices, the coefficient of determination ($R^2$) and the Root Mean Square Error (RMSE), the two proposed confinement ultimate conditions presents a good performance compared to the major existing models except the models of Lam and Teng (2003) and Youssef et al. (2007) which have relatively similar performance to the proposed models.

Statistical Space-Time Metamodels Based on Multiple Responses Approach for Time-Variant Dynamic Response of Structures (구조물의 시간-변화 동적응답에 대한 다중응답접근법 기반 통계적 공간-시간 메타모델)

  • Lee, Jin-Min;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.989-996
    • /
    • 2010
  • Statistical regression and/or interpolation models have been used for data analysis and response prediction using the results of the physical experiments and/or computer simulations in structural engineering fields. These models have been employed during the last decade to develop a variety of design methodologies. However, these models only handled responses with respect to space variables such as size and shape of structures and cannot handle time-variant dynamic responses, i.e. response varying with time. In this research, statistical space-time metamodels based on multiple response approach that can handle responses with respect to both space variables and a time variable are proposed. Regression and interpolation models such as the response surface model (RSM) and kriging model were developed for handling time-variant dynamic responses of structural engineering. We evaluate the accuracies of the responses predicted by the two statistical space-time metamodels by comparing them with the responses obtained by the physical experiments and/or computer simulations.

A Study on the Performance Evaluation of the College-Entrance Processes (대학 입학전형별 학업성취도 연구)

  • Oh, Jung-Hyun;Jung, Jae-Yoon;Hong, Young-Hoon;Park, Sang-Gue;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.987-996
    • /
    • 2010
  • The goal of the entrance examination models is to promote promising and potential students who are suitable for post-secondary education purposes. Recently, a promotion system based on the admissions supervisors has been the major role for the promotion of students. Various statistical models and methods should be applied for the better and reasonable promotion of promising Korean and international students. In this study, we applied the proper methods in statistical methodologies and show the meaningful results on the performance evaluation of the several entrance examination models for a university in Seoul, Korea.