• Title/Summary/Keyword: Modeling of Bearing System

Search Result 120, Processing Time 0.031 seconds

Application of six neural network-based solutions on bearing capacity of shallow footing on double-layer soils

  • Wenjun DAI;Marieh Fatahizadeh;Hamed Gholizadeh Touchaei;Hossein Moayedi;Loke Kok Foong
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.231-244
    • /
    • 2023
  • Many of the recent investigations in the field of geotechnical engineering focused on the bearing capacity theories of multilayered soil. A number of factors affect the bearing capacity of the soil, such as soil properties, applied overburden stress, soil layer thickness beneath the footing, and type of design analysis. An extensive number of finite element model (FEM) simulation was performed on a prototype slope with various abovementioned terms. Furthermore, several non-linear artificial intelligence (AI) models are developed, and the best possible neural network system is presented. The data set is from 3443 measured full-scale finite element modeling (FEM) results of a circular shallow footing analysis placed on layered cohesionless soil. The result is used for both training (75% selected randomly) and testing (25% selected randomly) the models. The results from the predicted models are evaluated and compared using different statistical indices (R2 and RMSE) and the most accurate model BBO (R2=0.9481, RMSE=4.71878 for training and R2=0.94355, RMSE=5.1338 for testing) and TLBO (R2=0.948, RMSE=4.70822 for training and R2=0.94341, RMSE=5.13991 for testing) are presented as a simple, applicable formula.

A Basic Study of Automatic Rebar Length Estimate Algorithm of Bearing Wall by Using BIM-Based Shape Codes Built in Revit (BIM 기반 형상코드를 이용한 내력벽 철근길이 자동 산정 기초 연구)

  • Lim, Jeeyoung;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.79-80
    • /
    • 2023
  • Reinforced concrete structures require large amounts of concrete and rebar in the construction stage. Rebar is a major resource for reinforced concrete structures, and generates more CO2 per unit weight than other materials. To solve this problem, it was confirmed that the cutting waste can be close to zero when the special length of the rebar is calculated in the drawing created after structural design. However, a system for automatically calculating the length of reinforcing bars to efficiently calculate the total amount of reinforcing bars has not been established. Therefore, the objective of this study is a basic study of automatic rebar length estimate algorithm of bearing wall by using BIM-based shape codes built in Revit. The bearing wall rebar can be automatically derived using the developed model. Furthermore, through applying the developed model to the construction field, it will greatly contribute to reducing greenhouse gas emissions by reducing rebar cutting waste.

  • PDF

Three-dimensional Rotordynamic Analysis Considering Bearing Support Effects (베어링 지지 효과를 고려한 3차원 로터동역학 해석)

  • Park, Hyo-Keun;Kim, Dong-Man;Kim, Yu-Sung;Kim, Myung-Kuk;Chen, Seung-Bae;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.105-113
    • /
    • 2007
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and full three-dimensional models. The present computational method is based on the general finite element method with rotating gyroscopic effects of the rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis tools and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test data conducted herein.

A hybrid seismic response control to improve performance of a two-span bridge

  • Heo, Gwanghee;Kim, Chunggil;Jeon, Seunggon;Lee, Chinok;Jeon, Joonryong
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.675-684
    • /
    • 2017
  • In this paper, a hybrid seismic response control (HSRC) system was developed to control bridge behavior caused by the seismic load. It was aimed at optimum vibration control, composed of a rubber bearing of passive type and MR-damper of semi-active type. Its mathematical modeling was driven and applied to a bridge model so as to prove its validity. The bridge model was built for the experiment, a two-span bridge of 8.3 meters in length with the HSRC system put up on it. Then, inflicting the EI Centro seismic load on it, shaking table tests were carried out to confirm the system's validity. The experiments were conducted under the basic structure state (without an MR-damper applied) first, and then under the state with an MR-damper applied. It was also done under the basic structure state with a reinforced rubber bearing applied, then the passive on/off state of the HSRC system, and finally the semi-active state where the control algorithm was applied to the system. From the experiments, it was observed that pounding rather increased when the MR-damper alone was applied, and also that the application of the HSRC system effectively prevented it from occurring. That is, the experiments showed that the system successfully mitigated structural behavior by 70% against the basic structure state, and, further, when control algorithm is applied for the operation of the MR-damper, relative displacement was found to be effectively mitigated by 80%. As a result, the HSRC system was proven to be effective in mitigating responses of the two-span bridge under seismic load.

Performance analysis of a hermetic reciprocating compressor using the alternative refrigerants, HFC134a and HC600a (대체냉매(HFC134a, HC600a)용 밀폐형 왕복동 압축기의 성능해석에 관한 연구)

  • Kim, Jeong-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.966-979
    • /
    • 1998
  • Thermodynamic and dynamic analysis has been conducted to investigate performance variations induced by substitution of alternative refrigerants, HFC134a or HC600a for CFC12 in hermetic reciprocating compressors. For the thermodynamic analysis, mass and energy conservation laws are applied to the cylinder volume and Helmholtz resonator modeling method is adopted to describe gas pulsations at suction and discharge system. The modeling of the dynamics of the compressor mechanism has been performed with lumped mass method to analyse the bearing loads and friction losses at each bearing. To verify the correctness of this analysis, results of the performance simulation have been compared to those of calorimetric measurrements of compressor operating with CFC12. Analysis of the various losses, noise and reliability as well as performance has been conducted to present the design guideline for the compressor development with alternative refrigerants. It is found that compressors with alternative refrigerants, HFC 134a or HC600a give better COPs than those with CFC12 under the same operating conditions and especially, compressors with HC600a show better reliability and noise characteristics also.

Modeling of Displacement of Linear Roller Bearing Subjected to External Forces Considering LM Block Deformation (외부하중을 받는 선형 롤러베어링의 LM 블록 변형을 고려한 변위 모델링)

  • Kwon, Sun-Woong;Tong, Van-Canh;Hong, Seong-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1077-1085
    • /
    • 2016
  • Linear roller bearing (LRB) is an important mechanical element that is widely used in precise positioning systems that are subjected to large loads. This paper presents a new model for estimating the displacement of an LRB subjected to external forces. For this purpose, assuming that the linear motion block (LM block) is rigid, the equilibrium conditions for the LRB were obtained by solving the equilibrium equations of the rollers and the rigid LM block using the iterative Newton-Raphson method. The contact loads between the rollers and raceways were determined considering the profiled rollers. Then, the structural deformations of the LM block, subjected to the contact loads from the rigid LM block model, were computed using a finite element model for the LM block. The displacements of the LRB were then determined by superposition of the rigid LM block displacements on the induced displacements due to the structural deformations of the LM block. The proposed method was verified through comparison with a program by the bearing manufacturer.

A Robust Disturbance Observer for Uncertain Linear Systmes (불확실한 성형시스템에 대한 강인 외란관측기)

  • Kim, Jun-Sik;O, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2731-2743
    • /
    • 1996
  • When modeling error is large of plant is time-varying, it is hard to obtain good robust performance and robust stability by conventional contorl methods. Here, we need to design a robust controller bearing modeling error. In this paper, based on recently developed Time Delay Control(TDC) and Disturbance Observer the output feedback Robust Disturbance Observer(RDO), which is easily combined with general linear control, is proposed. Proposed RDO is derived from extending the main idea of Disturbance Observer to multi-input multi-output linear system. RDO solves robust stability problem of Disturbance Observer and has the robust performance same as nominal performance. RDO controlled dual stage positioning system shows excellent robust performance.

Modeling and Validation of RK4 Multi Axis Rotor system (RK4 다축 회전체 시스템의 동역학모델링 및 검증)

  • Kwonn, Ki Beom;Han, Jeong Sam;Jeon, ByungChul;Jung, Joonha;Youn, Byeng D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.233-237
    • /
    • 2014
  • In this paper, the finite element modeling of the RK4 rotor kit system (RK4) and then frequency analysis and transient analysis, and was compared with the actual experimental results. RK4 manufactured by General Electric for the purpose of education and research. It is composed of two shaft, Two shaft is connected using a flexible coupling, one disk is mounted. The analytical model is modeled by using the ANSYS finite element analysis program commercially available. Based on impact hammer test results, material properties and the stiffness of the bearing and coupling was tuned. Considering the operating conditions and the vibration response of the analytical model were compared with experimental results.

  • PDF

Stability analysis of pump using finite element method (유한요소법에 의한 펌프축계의 안정성해석)

  • 양보석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.31-40
    • /
    • 1986
  • With the tendency toward high speed and high pressure in centrifugal pumps, the problem of sub-synchronous vibration has arisen, caused by the hydraulic forces of the working fluid, such as wearring, balance piston, impeller, etc.. These forces can drastically alter the rotor critical speeds and stability characteristics, and can be acted significant destabilizing forces. For preventing such self-excited vibration, the desing of the rotor system needs, which would secure the stability of the machine. In this paper, a procedure is presented for dynamic modeling of rotor-bearing-seal-impeller systems which consist of rigid disks, distributed parameter finite rotor elements and discrete bearings, seals and impellers. A finite element model including the effects of rotatory inertia and gyroscopic moments is developed using the consistent matrix approach. The technique of dynamic matrix reduction is applied to the shaft matrices to reduce them to a set of matrices of dynamic of significantly fewer degrees of freedom. The representation of bearing, seal and impeller elements is in term of linearized stiffness and damping matrices by reasonably small perturbations from equilibrium. The stability behavior of a typical double suction centrifugal pump is presented. Results show the influence of clearance and flow conditions on running speeds and stability characteristics.

  • PDF

Dynamic analysis and control parameters deduction of Hybrid thrust magnetic bearing (하이브리드 스러스트 마그네틱 베어링의 제어변수 도출 및 동특성 해석)

  • Jang, Seok-Myeong;Lee, Un-Ho;Sung, So-Young;Choi, Jang-Young;Kim, Soon-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.724_725
    • /
    • 2009
  • This paper deals with control parameters deduction and dynamic analysis of hybrid thrust magnetic bearing(HTMB). The flux density at air-gap is obtained from system modeling which considers permanent magnet and electro magnet. The vertical force is derived from flux density using maxwell's stress tensor. An accurate linear model is obtained by using linear approximations of the attraction force around the nominal equilibrium point. The dynamic simulation of the HTMB using the PD controller is conducted and control parameters are deducted.

  • PDF