• Title/Summary/Keyword: Modeling methodology

Search Result 1,763, Processing Time 0.027 seconds

Model-based Design for Autonomous Defense Systmes (자치적 방어 시스템을 위한 모델베이스기반 설계)

  • 이종근
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.1
    • /
    • pp.89-99
    • /
    • 1999
  • The major objective of this research is to propose a design architecture for autonomous defense systems for supporting highly intelligent behavior by combining decision, perception, and action components. Systems with such high levels of autonomy are critical for advanced battlefield missions. By integrating a plenty of advanced modeling concepts such as system entity structure, endomorphic modeling, engine-based modeling, and hierarchical encapsulation & abstraction principle, we have proposed four layered design methodology for autonomous defense systems that can support an intelligent behavior under the complicated and unstable warfare. Proposed methodology has been successfully applied to a design of autonomous tank systems capable of supporting the autonomous planning, sensing, control, and diagnosis.

  • PDF

A Cooperative Workflow Modeling Methodology Using Fragment-ICNs (조각-ICN 기반 협업 워크플로우 모델링 방법론)

  • Kim Hyung-Mok;Kim Kwang-Hoon
    • Journal of Internet Computing and Services
    • /
    • v.6 no.6
    • /
    • pp.107-115
    • /
    • 2005
  • A workflow procedure has recently become more complicated and large scaled. In this paper, we propose an advanced workflow modeling methodology, called a fragment driven cooperative workflow modeling methodology. which enables several real workflow designers to cooperatively define a workflow model. The methodology is a Bottom-Up approach in terms of integrating a set of fragment ICNs to compose a complete workflow model. Each fragment ICN is defined by each participant in the cooperative modeling session, We also use the ICN based formal description and the ICN based graphical notation as well. Finally, we prove the feasibility of the methodology by implementing a cooperative workflow modeling system.

  • PDF

System of Systems Approach to Formal Modeling of CPS for Simulation-Based Analysis

  • Lee, Kyou Ho;Hong, Jeong Hee;Kim, Tag Gon
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.175-185
    • /
    • 2015
  • This paper presents a system-of-systems (SoS) approach to the formal modeling of a cyber-physical system (CPS) for simulation-based analysis. The approach is based on a convergence technology for modeling and simulation of a highly complex system in which SoS modeling methodology, hybrid systems modeling theory, and simulation interoperation technology are merged. The methodology maps each constituent system of a CPS to a disparate model of either continuous or discrete types. The theory employs two formalisms for modeling of the two model types with formal specification of interfaces between them. Finally, the technology adapts a simulation bus called DEVS BUS whose protocol synchronizes time and exchange messages between subsystems simulation. Benefits of the approach include reusability of simulation models and environments, and simulation-based analysis of subsystems of a CPS in an inter-relational manner.

Personalized Face Modeling for Photorealistic Synthesis

  • Kim, Kyungmin;Shim, Hyunjung
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.2
    • /
    • pp.47-51
    • /
    • 2015
  • Faces play a key role in revealing the personalized attributes such as the identity, emotion, health condition, etc. Due to the importance of faces, computer-assisted face modeling and reconstruction have been actively studied both in computer vision and graphics community. Especially, face reconstruction and realistic face synthesis are well-grounded research problems and various approaches have been proposed during the last decade. In this paper, we discuss a wide range of existing work in face modeling by introducing their target applications, categorizing them upon their methodology and addressing their strength and weakness on performance. Finally, we introduce remaining research issues and suggest the future research direction in face modeling. We believe that this paper provides a high-level overview on face modeling techniques and helps understand the major research issues and the trends of methodology.

Hierarchical Modeling Methodology for Contraint Simulations (제약조건이 있는 시뮬레이션을 위한 계층적 모델링 방법론)

  • 이강선
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.4
    • /
    • pp.41-50
    • /
    • 2000
  • We have many simulation constraints to meet as a modeled system becomes large and complex. Real-time simulations are the examples in that they are constrained by certain non-function constraints (e.g., timing constraints). In this paper, an enhanced hierarchical modeling methodology is proposed to efficiently deal with constraint-simulations. The proposed modeling method enhances hierarchical modeling methods to provide multi-resolution model. A simulation model is composed by determining the optimal level of abstraction that is guaranteed to meet the given simulation constraints. Four modeling activities are defined in the proposed method: 1) Perform the logical architectural design activity to produce a multi-resolution model, 2) Organize abstraction information of the multi-resolution model with AT (Abstraction Tree) structure, 3) Formulate the given constraints based on U (Integer Programming) approach and embrace the constraints to AT, and 4) Compose a model based on the determined level of abstraction with which the multi-resolution model can satisfy all given simulation constraints. By systematically handling simulation constraints while minimizing the modeler's interventions, we provide an efficient modeling environment for constraint-simulations.

  • PDF

Worm Virus Modeling and Simulation Methodology Using Artificial Life. (인공생명기반의 웜 바이러스 모델링 및 시뮬레이션 방법론)

  • Oh Ji-yeon;Chi Sung-do
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.171-179
    • /
    • 2005
  • Computer virus modeling and simulation research has been conducted with focus on the network vulnerability analysis. However, computer virus generally shows the biological virus characters such as proliferation, reproduction and evolution. Therefore it is necessary to research the computer virus modeling and simulation using Artificial Life. The approach of computer modeling and simulation using the Artificial Life technology Provides the efficient analysis method for the effects on the network by computer virus and the behavioral mechanism of the computer virus. Hence this paper proposes the methodology of computer virus modeling and simulation using Artificial Life, which may be contribute the research on the computer virus vaccine.

  • PDF

DEVS/HLA-based Virtual Warfare Simulation Methodology (DEVS/HLA 기반 가상전장 모델링 방법론)

  • Kang Kwang-Chun;Oh Ji-Yeon;Chi Sung-Do;Chae Soo-Hwan;Lee Sang-Min
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.05a
    • /
    • pp.123-128
    • /
    • 2005
  • War-game modeling and simulation system have been developed and applied to virtual tactical training both inside and outside of country However, most existing models have been developed for individual purpose based on the simple platform modeling such as physical modeling, visual modeling, and conceptual modeling. Thus, those modeling and simulation system cannot support the interoperability, expensively, variety and reusability. To deal with these problems, the paper propose an integrated design methodology for the War-game systems based on the DEVS/HLA.

  • PDF

Dynamic System Modeling for Closed Loop Supply Chains System

  • Wadhwa, Subhash;Madaan, Jitendra
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.78-89
    • /
    • 2008
  • The need for holistic modeling efforts for returns that capture the extended closed loop supply chain (CLSC) system at strategic as well as operational level has been clearly recognized by the industry and academia. Strategic decision-makers need comprehensive models that can guide them in efficient decision-making to increase the profitability of the entire forward and return chain. Therefore, determination of a near optimal design configuration, which includes the environmental, economical and technological capability factors, is important in strategic decision-making effort that affect the profitability of the closed loop supply chain. In this paper, we adopted an improved system dynamics methodology to tackle strategic issues that affect various performance measures, like market, time/cost, environment etc., for closed loop supply chains. After studying real life implementation issues in CLSC design, we presented guidelines for the PBM (Participative Business Modeling) methodology and presented its extension for the strategic dynamic system modeling of return chains. Finally, we demonstrated the measurement of operational performance by extending SD (system dynamic) application to closed loop supply chain management.

Modeling and Verification Methodology for Context-awareness Service using Colored Petri-Net (Colored Petri-Net을 이용한 상황인식 서비스의 모델링과 검증 방법)

  • Han, Seung-Wok;Youn, Hee-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.4
    • /
    • pp.283-290
    • /
    • 2009
  • Context-awareness is one of the key features of ubiquitous paradigm. A methodology that is specifying the relationships between the contexts and services needs to be developed to intelligently and sensitively deal with dynamic environment. The existing models on context-aware modeling are difficult to verify the correctness of models with respect to timeliness. In this paper we propose an approach which includes timing constraint in the relations of the context model, and verify its effectiveness using colored Petri-Net. Moreover, a context-modeling toolkit including context-awareness engine and simulator is developed to support agent-based context-aware service. The effectiveness of the proposed methodology is demonstrated using an example of Usilvercare.

A Binary Decision Diagram-based Modeling Rule for Object-Relational Transformation Methodology (객체-관계 변환 방법론을 위한 이진 결정 다이어그램 기반의 모델링 규칙)

  • Cha, Sooyoung;Lee, Sukhoon;Baik, Doo-Kwon
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1410-1422
    • /
    • 2015
  • In order to design a system, software developers use an object model such as the UML class diagram. Object-Relational Transformation Methodology (ORTM) is a methodology to transform the relationships that are expressed in the object model into relational database tables, and it is applied for the implementation of the designed system. Previous ORTM studies have suggested a number of transformation methods to represent one relationship. However, there is an implementation problem that is difficult to apply because the usage criteria for each transformation method do not exist. Therefore, this paper proposes a binary decision diagram-based modeling rule for each relationship. Hence, we define the conditions for distinguishing the transformation methods. By measuring the query execution time, we also evaluate the modeling rules that are required for the verification. After evaluation, we re-define the final modeling rules which are represented by propositional logic, and show that our proposed modeling rules are useful for the implementation of the designed system through a case study.