• Title/Summary/Keyword: Modeling and control

Search Result 4,372, Processing Time 0.036 seconds

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.

Application of a Geographically Weighted Poisson Regression Analysis to Explore Spatial Varying Relationship Between Highly Pathogenic Avian Influenza Incidence and Associated Determinants (공간가중 포아송 회귀모형을 이용한 고병원성 조류인플루엔자 발생에 영향을 미치는 결정인자의 공간이질성 분석)

  • Choi, Sung-Hyun;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • In South Korea, six large outbreaks of highly pathogenic avian influenza (HPAI) have occurred since the first confirmation in 2003 from chickens. For the past 15 years, HPAI outbreaks have become an annual phenomenon throughout the country and has extended to wider regions, across rural and urban environments. An understanding of the spatial epidemiology of HPAI occurrence is essential in assessing and managing the risk of the infection; however, local spatial variations of relationship between HPAI incidences in Korea and related risk factors have rarely been derived. This study examined whether spatial heterogeneity exists in this relationship, using a geographically weighted Poisson regression (GWPR) model. The outcome variable was the number of HPAI-positive farms at 252 Si-Gun-Gu (administrative boundaries in Korea) level notified to government authority during the period from January 2014 to April 2016. This response variable was regressed to a set of sociodemographic and topographic predictors, including the number of wild birds infected with HPAI virus, the number of wintering birds and their species migrated into Korea, the movement frequency of vehicles carrying animals, the volume of manure treated per day, the number of livestock farms, and mean elevation. Both global and local modeling techniques were employed to fit the model. From 2014 to 2016, a total of 403 HPAI-positive farms were reported with high incidence especially in western coastal regions, ranging from 0 to 74. The results of this study show that local model (adjusted R-square = 0.801, AIC = 954.5) has great advantages over corresponding global model (adjusted R-square = 0.408, AIC = 2323.1) in terms of model fitting and performance. The relationship between HPAI incidence in Korea and seven predictors under consideration were significantly spatially non-stationary, contrary to assumptions in the global model. The comparison between global Poisson and GWPR results indicated that a place-specific spatial analysis not only fit the data better, but also provided insights into understanding the non-stationarity of the associations between the HPAI and associated determinants. We demonstrated that an empirically derived GWPR model has the potential to serve as a useful tool for assessing spatially varying characteristics of HPAI incidences for a given local area and predicting the risk area of HPAI occurrence. Considering the prominent burden of HPAI this study provides more insights into spatial targeting of enhanced surveillance and control strategies in high-risk regions against HPAI outbreaks.

The Moderating Effect of Gender in the Relationship between Physical Education and Adolescents' Internalizing and Externalizing Problem Behaviors: Using Multi-level Growth Modeling (체육시간과 청소년의 외현화·내재화 문제와의 관계에서 성별의 조절효과: 다층성장모형의 적용)

  • Taekho Lee;Seokyoung Lee;Yoonsun Han
    • Korean Journal of Culture and Social Issue
    • /
    • v.21 no.2
    • /
    • pp.131-158
    • /
    • 2015
  • This study examined the relationship between physical education and externalizing(aggression) and internalizing(depression, social withdrawal) problem behaviors among adolescents. The moderating role of gender and time in the association between physical education and problem behavior was also identified. This study used data from the second, third, and fourth waves of the middle school student cohort (N=2,133, N=2,151, N=1,979) of the Korean Children-Youth Panel Survey(KCYPS). Main analyses involved multilevel growth model with interaction terms. The dependent variables were aggression, depression, and social withdrawal. The independent variables were gender and physical education (exercise hours) at school. The control variables were abuse, school-adjustment, annual household income and parents' highest level of education. The major longitudinal findings of this study are as follows: First, there was significant change according to the passage of time only in aggression among externalizing and internalizing problems. Second, gender differences exist in aggression and depression. Third, exercise hours of physical education had a negative relationship with internalizing problems. Fourth, there were no gender differences over time in both externalizing and internalizing problems. Fifth, the interaction between exercise hours of physical education and time was statistically significant for social withdrawal. Sixth, the interaction between exercise hours of physical education and gender was statistically significant for depression. The results of this study may become an academic basis for suggesting policy directions that promote increased exercise hours in physical education classes at school.

  • PDF

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part I : Modeling (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part I : 모델링)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.484-495
    • /
    • 2020
  • To numerically simulate the advance of EPB TBM, various type of numerical analysis methods have been adopted including discrete element method (DEM), finite element method (FEM), and finite difference method (FDM). In this paper, an EPB TBM driving model was proposed by using coupled DEM-FDM. In the numerical model, DEM was applied in the TBM excavation area, and contact properties of particles were calibrated by a series of triaxial tests. Since the ground around the excavation area was coupled with FDM, the horizontal stress considering the coefficient of earth pressure at rest could be applied. Also, the number of required particles was reduced and the efficiency of the analysis was increased. The proposed model can control the advance rate and rotational speed of the cutter head and screw conveyor, and derive the torque, thrust force, chamber pressure, and discharging during TBM tunnelling.

Factors affecting Pig Farmers' Adoption of the HACCP System

  • Jung, Gu-Hyun;Ahn, Kyeong Ah;Kim, Han-Eul;Jo, Hye Bin;Choe, Young-Chan
    • Agribusiness and Information Management
    • /
    • v.3 no.2
    • /
    • pp.43-62
    • /
    • 2011
  • The goal of this study is to determine, based on survey results, the underlying factors that affect the intention of the farmers who have not adopted the Hazard Analysis and Critical Control Points (HACCP) system for the rearing phase of pig production to adopt this system in the future. The research model for this study was con structed based on strategic contingency theory, the theory of the diffusion of innovation, and the technology acceptance model (TAM). Using structural equation modeling with partial least squares (PLS), this study analyzes the effects of the intensity of competition, the environmental uncertainty, the innovativeness and self-efficacy of the individual farmers, and the impact of the credibility of the Agricultural Technology Service Center (ATSC), which acts as the principal agent of technology dissemination and as a leader of change, on the perceived usefulness of technology and the farmers' intention to adopt the system. The results of the analysis are as follows. First, with regard to the underlying factors affecting the intention to adopt the new system, the intensity of competition within the industry and the institutional credibility of the ATSC were inferred to underlie the perceived usefulness. Second, institutional credibility has a positive impact on the perceived usefulness of the system, and the perceived usefulness, in turn, has a positive impact on the intention to adopt. The perceived ease of use also has a positive impact on the intention to adopt. Because the factor that has the biggest impact on the intention of a farm to adopt is the credibility of the ATSC, it is crucial for extension organizations, such as the ATSC, to make greater efforts to promote the expansion of the HACCP system. Because farmers feel that the implementation of the HACCP system is an instrumental strategy for coping with the high intensity of competition within the industry, they attempt to gain a competitive edge through the production of safe livestock products.

  • PDF

Georadar System Using Network-Analyzer (네트웍 분석기를 이용한 레이다탐사 시스템의 구현)

  • Cho Seong-Jun;Kim Jung-Ho;Lee Seoung Kon;Son Jeong-Sul;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.272-279
    • /
    • 2002
  • During field survey of ground penetrating radar or borehole radar, we often encounter some problems which could be solved easily by modifying structure of the system such as antenna length, shape or array. In addition, it is necessary that the user could easily modify configuration of the radar system na test various array of antennas in order to verify and confirm numerical modeling results concerning radar antennas. We have developed network-analyzer-based, stepped-frequency georadar system. This system had been comprised with coaxial cable to confirm possibility of the system, then we have upgraded the system to use optical cable that is composed of optical/electric transducers, electric/optical transducers, amp, pre-amp and antennas. The software for the aquisition of data has been developed to control the system automatically using PC with GPIB communication and to display the obtained data graphically. We have tested the system in field survey na the results have been compared with those of RAMAC/GPR system.

Spatial Variation in Land Use and Topographic Effects on Water Quality at the Geum River Watershed (토지이용과 지형이 수질에 미치는 영향의 공간적 변동성에 관한 연구 - 금강 권역을 중심으로)

  • Park, Se-Rin;Choi, Kwan-Mo;Lee, Sang-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.94-104
    • /
    • 2019
  • In this study, we investigated the spatial variation in land use and topographic effects on water quality at the Geum river watershed in South Korea, using the ordinary least squares(OLS) and geographically weighted regression (GWR) models. Understanding the complex interactions between land use, slope, elevation, and water quality is essential for water pollution control and watershed management. We monitored four water quality indicators -total phosphorus, total nitrogen, biochemical oxygen demand, and dissolved oxygen levels - across three land use types (urban, agricultural, and forested) and two topographic features (elevation and mean slope). Results from GWR modeling revealed that land use and topography did not affect water quality consistently through space, but instead exhibited substantial spatial non-stationarity. The GWR model performed better than the OLS model as it produced a higher adjusted $R^2$ value. Spatial variation in interactions among variables could be visualized by mapping $R^2$ values from the GWR model at fine spatial resolution. Using the GWR model, we were able to identify local pollution sources, determine habitat status, and recommend appropriate land-use planning policies for watershed management.

Numerical study on the foam spraying for AFDSS applicable to initial fire suppression in large underground spaces (지하대공간 초동 화재진압에 적용가능한 자율형 소화체계의 폼 분사 해석 기법 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.503-516
    • /
    • 2021
  • Autonomous fire detection and suppression system requires advanced technology for complex detection technology and injection/control technology for accurate hitting by fire location. Also, foam spraying should be included to respond to oil fires. However, when a single spray monitor is used in common, water and foam spray properties appear different, so for accurate fire suppression, research on the spray trajectory and distance will be required. In this study, experimental studies and numerical analysis studies were combined to analyze the foam spray characteristics through the spray monitor developed for the establishment of an autonomous fire extinguishing system. For flow analysis of foam injection, modeling was performed using OpenFOAM analysis software, and the commonly used foaming agent (Aqueous Film-Forming Foam) was applied for foam properties. The injection distance analysis was performed according to the injection pressure and the injection angle according to the form of the foam, and at the same time, the results were verified and presented through the injection experiment.

An Analysis of the Effects of Fine Dust Reduction Policies on PM10 Concentration and Health Using System Dynamics (시스템다이내믹스를 활용한 미세먼지 저감 정책이 미세먼지 농도와 건강에 미치는 영향 분석)

  • Seho Lee;Jung Eun Kang;Ji-Yoon Lee;Minyeong Park;Ji Yoon Choi
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.318-337
    • /
    • 2023
  • This study utilizes system dynamics to examine the effects of fine dust reduction policies on PM10 concentration and health. System dynamics has the advantage of modeling the dynamic and circular relationship between PM10 emission sources, reduction policies, PM10 concentration, and health effect. The study created policy scenarios for Korea's representative fine dust reduction policies - industrial PM10 emission control, diesel vehicle regulation, expansion of electric vehicles, and expansion of parks and green areas - and compared the results with the 2030 baseline if the current trend is maintained. The analysis showed that the policy of supporting electric vehicles reduced PM10 concentration by 0.21 ㎍/m3 and reduced the number of people with circulatory diseases by 494, and the effect was evenly distributed across the country. The industrial emissions regulation scenario resulted in the highest PM10 concentration reduction of 0.22 ㎍/m3, but had a lower reduction in the number of people affected (358) than the EV support strategy, which could be attributed to the fact that this policy had a particularly high PM10 reduction effect in industrial areas such as Danyang-gun, Chungcheongbuk-do, and Sahagu, Busan. As a policy implication, this study suggests that it is necessary to apply fine dust policies tailored to the characteristics of local emission sources.

Evaluation and Weathering Depth Modeling of Thermally Altered Pelitic Rocks based on Chemical Weathering and Variations: Ulju Cheonjeon-ri Petroglyph (화학적 풍화작용과 조성변화에 따른 열변질 이질암의 풍화심도 모델링 및 평가: 울주 천전리 각석)

  • LEE Chan Hee;CHUN Yu Gun
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.160-189
    • /
    • 2023
  • The Cheonjeon-ri petroglyph is inscribed with shale formation belonging to the Daegu Formation of the Gyeongsang Supergroup in the Cretaceous of the Mesozoic Era. This rock undergoes thermal alteration to become hornfels, and has a high hardness and dense texture. Rock-forming minerals have almost the same composition as quartz, alkali felspar, plagioclase, calcite, mica, chlorite and opaque minerals, but calcite is rarely detected in the weathered zone. The petroglyph forms a weathered zone with a certain depth, and there is a difference in mineral and chemical composition between weathered and unweathered zones, respectively. The CaO contents of the weathered zone were reduced by more than 90% compared to that of the unweathered zone, because calcite reacted with water and dissolved. As a result of calculating the surface weathering depth for the petroglyph with the transmission characteristics of X-rays, depth of the parts in falling off and exfoliation showed a depth of about 0.5 to 1 mm, but the weathering depth in most areas was calculated to be about 3 to 4 mm. This can be proved by the contents and changes of Ca and Sr. The surface discolorations of the petroglyph are distributed with different color density, and the yellowish brown discoloration is alternated with a thin biofilm layer, showing a coverage of 79.6%. Therefore, periodic preservation managements and preventive conservation monitoring that can effectively control the physicochemical and biological damages of the Cheonjeonri petroglyph will be necessary.