• Title/Summary/Keyword: Modeling and control

Search Result 4,372, Processing Time 0.028 seconds

Human Assisted Fitting and Matching Primitive Objects to Sparse Point Clouds for Rapid Workspace Modeling in Construction Automation (-건설현장에서의 시공 자동화를 위한 Laser Sensor기반의 Workspace Modeling 방법에 관한 연구-)

  • KWON SOON-WOOK
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.151-162
    • /
    • 2004
  • Current methods for construction site modeling employ large, expensive laser range scanners that produce dense range point clouds of a scene from different perspectives. Days of skilled interpretation and of automatic segmentation may be required to convert the clouds to a finished CAD model. The dynamic nature of the construction environment requires that a real-time local area modeling system be capable of handling a rapidly changing and uncertain work environment. However, in practice, large, simple, and reasonably accurate embodying volumes are adequate feedback to an operator who, for instance, is attempting to place materials in the midst of obstacles with an occluded view. For real-time obstacle avoidance and automated equipment control functions, such volumes also facilitate computational tractability. In this research, a human operator's ability to quickly evaluate and associate objects in a scene is exploited. The operator directs a laser range finder mounted on a pan and tilt unit to collect range points on objects throughout the workspace. These groups of points form sparse range point clouds. These sparse clouds are then used to create geometric primitives for visualization and modeling purposes. Experimental results indicate that these models can be created rapidly and with sufficient accuracy for automated obstacle avoidance and equipment control functions.

Modeling and Control of a Hydraulic Semiactive Vibration Absorber (유압식 반능동 진동 흡수기의 모델링과 제어)

  • 모창기
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.700-705
    • /
    • 1998
  • Recent past work has demonstrated that hydraulic semiactive vibration absorbers hold the promise of providing an ideal means of mitigating structural vibration. This paper examines a factor that must be treated when designing a hydraulic semiactive vibration absorber for application to a full scale structure; fluid compressibility. An expanded and consistent dynamic model of the flow process is first established. A simple feedback control is then tested on a single degree of freedom laboratory structure to verify the findings.

  • PDF

Modeling for Distributed Control of Elevator (엘리베이터 분산 제어를 위한 모델링)

  • Lee, Myung-Un;Jung, Soo-Young;Kwon, Wook-Hyun;Choe, Gyu-Ha
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1620-1624
    • /
    • 2003
  • Recently, the height of building is more high and the number of moving people is increasing in the building. So we want to be necessary more effective vertical moving tool. Most of high intelligent building can satisfy tills need using many elevators. Many elevators system should need to distribute and distribute many elevator effectively. This paper effectively use many elevators to reduce customer' waiting time and propose the model of mathematical group control system.

  • PDF

Modeling in System Engineering: Conceptual Time Representation

  • Al-Fedaghi, Sabah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.153-164
    • /
    • 2021
  • The increasing importance of such fields as embedded systems, pervasive computing, and hybrid systems control is increasing attention to the time-dependent aspects of system modeling. In this paper, we focus on modeling conceptual time. Conceptual time is time represented in conceptual modeling, where the notion of time does not always play a major role. Time modeling in computing is far from exhibiting a unified and comprehensive framework, and is often handled in an ad hoc manner. This paper contributes to the establishment of a broader understanding of time in conceptual modeling based on a software and system engineering model denoted thinging machine (TM). TM modeling is founded on a one-category ontology called a thimac (thing/machine) that is used to elaborate the design and analysis of ontological presumptions. The issue under study is a sample of abstract modeling domains as exemplified by time. The goal is to provide better understanding of the TM model by supplementing it with a conceptualization of time aspects. The results reveal new characteristics of time and related notions such as space, events, and system behavior.

Implementation of Digital Twin based Building Control System using Wireless Sensor Box

  • Shin, Sang-Hoon;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.57-64
    • /
    • 2020
  • In this paper, based on the building's 3D modeling, a digital twin-based building control system using the collection information of wireless sensor box is proposed. The proposed system applies wireless sensors, making sensor modules more expandable and usable, and more intuitive building control possible through three-dimensional modeling. In addition, effective control and visual representation are possible through BIM data. Sensor boxes have been designed for general purpose so that a variety of sensor modules can be added and have been implemented for actual university buildings to demonstrate high availability. The results of this paper could be used to implement a digital twin control platform in the future.

The Sliding Controller designed by the Indirect Adaptive Fuzzy Control Method (간접 적응 퍼지 제어기법에 의한 슬라이딩 제어기 설계)

  • Choi, Chang-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2283-2286
    • /
    • 2000
  • Sliding control is a powerful approach to controlling nonlinear and uncertain systems. Conventional sliding mode control suffer' from high control gain and chattering problem. also it needs mathematic! modeling equations for control systems. A Fuzzy controller is endowed with control rules and membership function that are constructed on the knowledge of expert, as like intuition and experience. but It is very difficult to obtain the exact values which are the membership function and consequent parameters. In this paper, without mathematical modeling equations, the plant parameters in sliding mode are estimated by the indirect adaptive fuzzy method. the proposed algorithm could analyze the system's stability and convergence behavior using Lyapunov theory. so sliding modes are reconstructed and decreased tracking error. moreover convergence time took a short. An example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF

Matrix Analysis Method for Design Error of Hybrid Synthesis Petri Net (하이브리드 합성 패트리 네트의 설계오류에 대한 매트릭스 분석 방법)

  • Kim, Jin-Kwon;Mo, Young-Seung;Kim, Jung-Chul;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.679-681
    • /
    • 2000
  • This thesis presents a analysis method of hybrid synthesis petri net for automated manufacturing systems in discrete event dynamic system. There are many errors that can happen to petri net modeling of complex systems because petri net modeling process has so many steps. A new matrix analysis method presented in this thesis can confirm the property of petri net such as boundedness, liveness and reversibility, modify errors which can be occurred in modeling.

  • PDF

Hybrid State Space Self-Tuning Fuzzy Controller with Dual-Rate Sampling

  • Kwon, Oh-Kook;Joo, Young-Hoon;Park, Jin-Bae;L. S. Shieh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.244-249
    • /
    • 1998
  • In this paper, the hybrid state space self-tuning control technique Is studied within the framework of fuzzy systems and dual-rate sampling control theory. We show that fuzzy modeling techniques can be used to formulate chaotic dynamical systems. Then, we develop the hybrid state space self-tuning fuzzy control techniques with dual-rate sampling for digital control of chaotic systems. An equivalent fast-rate discrete-time state-space model of the continuous-time system is constructed by using fuzzy inference systems. To obtain the continuous-time optimal state feedback gains, the constructed discrete-time fuzzy system is converted into a continuous-time system. The developed optimal continuous-time control law is then convened into an equivalent slow-rate digital control law using the proposed digital redesign method. The proposed technique enables us to systematically and effective]y carry out framework for modeling and control of chaotic systems. The proposed method has been successfully applied for controlling the chaotic trajectories of Chua's circuit.

  • PDF

Artificial Neural Network Modeling and Prediction Based on Hydraulic Characteristics in a Full-scale Wastewater Treatment Plant (실규모 하수처리공정에서 동력학적 동특성에 기반한 인공지능 모델링 및 예측기법)

  • Kim, Min-Han;Yoo, Chang-Kyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.555-561
    • /
    • 2009
  • The established mathematical modeling methods have limitation to know the hydraulic characteristics at the wastewater treatment plant which are complex and nonlinear systems. So, an artificial neural network (ANN) model based on hydraulic characteristics is applied for modeling wastewater quality of a full-scale wastewater treatment plant using DNR (Daewoo nutrient removal) process. ANN was trained using data which are influents (TSS, BOD, COD, TN, TP) and effluents (COD, TN, TP) components in a year, and predicted the effluent results based on the training. To raise the efficiency of prediction, inputs of ANN are added the influent and effluent information that are in yesterday and the day before yesterday. The results of training data tend to have high accuracy between real value and predicted value, but test data tend to have lower accuracy. However, the more hydraulic characteristics are considered, the results become more accuracy.

Modeling and Simulation Analysis of Grid-Connected Photovoltaic Generation System in terms of Dynamic behavior (계통연계형 태양광발전시스템의 동특성 모델링 및 모의해석)

  • Kim, Eung-Sang;Kim, Seul-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.127-131
    • /
    • 2005
  • The paper addresses modeling and analysis of a grid-connected photovoltaic generation system (PV system). PSCAD/EMIDC. an industry standard simulation tool for studying the transient behavior of electric power system and apparatus. is used to conduct all aspects of model implementation and to carry out extensive simulation study. An equivalent circuit model of a solar cell has been used for modeling solar array. A PWM voltage source inverter (VSI) and its current control scheme have been implemented. A maximum power point tracking (MPPT) technique is employed for drawing the maximum available energy from the PV array. Comprehensive simulation results are presented to examine PV array behaviors and PV system control performance in response to irradiation changes. In addition, dynamic responses of PV array and system to network fault conditions are simulated and analysed

  • PDF