• Title/Summary/Keyword: Modeling Automation

Search Result 404, Processing Time 0.03 seconds

Automatic 3-D Modeling System for Cooling Fans Based on a Solid Modeler (솔리드 모델러 기반의 냉각탑용 축류팬 자동 설계시스템)

  • 이광일;강재관;김원일;이윤경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.141-144
    • /
    • 1997
  • This paper presents design automation system using API and parametric modeling of solid modeler, which is applied on axial fans for cooling towers. The design data including chord length and twist angle according to the fan length are given by design program, and API functions are applied to automate the modeling and assembly process of fan blade. The boss to connect fan and motor is designed with parametric design function provided by UG so as to be flexibly changed by the value of design parameters. The process of generating 2-D drafting for parts and an assembly is also automated. With developed system, the modeling time is reduced to 5 minutes even with unskilled operators.

  • PDF

A Study on the Automation of the Connection modeling for Steel Structures based on BIM (BIM 기반의 철골접합부 모델링 자동화에 관한 연구)

  • Eom, Jin-Up;Shin, Tae-Song
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.99-108
    • /
    • 2010
  • This paper presents the results of a study that aimed to develop a module for auto connection modeling that can be applied to the structural details design and modeling phase. It was established that the steel connection library database from the structural analysis resulted from the consideration of the input parameters of the 3D modeling program and the guidelines for Korean standard steel connections. The module for the auto connection modeling in steel structures was developed by linking it with the established library database through the use of the OpenAPI software to prove that the developed module carried out the modeling of the six story (steel structure) office building. The productivity and efficiency of the module introduction was verified by comparing the conventional process and the proposed process.

A Methodology for Using ChatGPT to Improve BIM-based Design Data Evaluation System (BIM기반 설계데이터 평가 시스템 개선을 위한 ChatGPT활용 방법론)

  • Yu, Eun-Sang;Kim, Gu-Taek;Ahn, Yong-Han;Choi, Jung-Sik
    • Journal of KIBIM
    • /
    • v.14 no.2
    • /
    • pp.25-34
    • /
    • 2024
  • This study proposes a new methodology to increase the flexibility and efficiency of the design data evaluation system by combining Building Information Modeling (BIM) technology in the architectural industry, OpenAI's interactive artificial intelligence, and ChatGPT. BIM technology plays an important role in digitally modeling and managing architectural information. Since architectural information is included, research and development are underway to review and evaluate BIM data according to conditions through program development. However, in the process of reviewing BIM design data, if the review criteria or evaluation criteria according to design change occur frequently, it is necessary to update the program anew. In order for designers or reviewers to apply the changed criteria, requesting a program developer will delay time. This problem was studied by using ChatGPT to modify and update the design data evaluation program code in real time. In this study, it is aimed to improve the changing standards and accuracy by enabling programming non-professionals to change the design regulations and calculation standards of the BIM evaluation program system using ChatGPT. In this study, in the BIM-based design certification automation evaluation program, a program in which the automation evaluation method is being studied based on the design certification evaluation manual was first used. In the design certification automation evaluation program, the programming non-majors checked the automation evaluation code by linking ChatGPT, and the changed calculation criteria were created and modified interactively. As a result of the evaluation, the change in the calculation standard was explained to ChatGPT and the applied result was confirmed.

Process Modeling of Flexible Robotic Grinding

  • Wang, Jianjun;Sun, Yunquan;Gan, zhongxue;Kazerounian, Kazem
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.700-705
    • /
    • 2003
  • In this paper, an extended process model is proposed for the application of flexible belt grinding equipment as utilized in robotic grinding. The analytical and experimental results corresponding to grinding force, material removal rate (MRR) and contact area in the robotic grinding shows the difference between the conventional grinding and the flexible robotic grinding. The process model representing the relationship between the material removal and the normal force acting at the contact area has been applied to robotic programming and control. The application of the developed model in blade grinding demonstrates the effectiveness of proposed process model.

  • PDF

Load Flow Analysis for Distribution Automation System based on Distributed Load Modeling

  • Yang, Xia;Choi, Myeon-Song;Lim, Il-Hyung;Lee, Seung-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.329-334
    • /
    • 2007
  • In this paper, a new load flow algorithm is proposed on the basis of distributed load modeling in radial distribution networks. Since the correct state data in the distribution power networks is basic for all distribution automation algorithms in the Distribution Automation System (DAS), the distribution networks load flow is essential to obtain the state data. DAS Feeder Remote Terminal Units (FRTUs) are used to measure and acquire the necessary data for load flow calculations. In case studies, the proposed algorithm has been proven to be more accurate than a conventional algorithm; and it has also been tested in a simple radial distribution system.

A Study on Modeling of Sensor Fault Diagnosis using Kung's Algorithm (Kung's Algorithm을 이용한 센서 고장진단 모델링에 관한 연구)

  • Lee, Sang-Mok;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.355-357
    • /
    • 2017
  • With the development of automation technology and the increase of large-scale automation projects, sensors used for state monitor and parameter measurement have become more and more important. Once the sensor faults occur, which will lead to the degradation of automation system's performance, and even disastrous consequences. In this paper, sensor output value modeling is performed using Kung's Algorithm for direct fault diagnosis of sensor, and fault diagnosis method based on decision theory is presented.

  • PDF

Efficient 3D Modeling Automation Technique for Underground Facilities Using 3D Spatial Data (3차원 공간 데이터를 활용한 지하시설물의 효율적인 3D 모델링 자동화 기법)

  • Lee, Jongseo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1670-1675
    • /
    • 2021
  • The adoption of smart construction technology in the construction industry is progressing rapidly. By utilizing smart construction technologies such as BIM (Building Information Modeling), drones, artificial intelligence, big data, and Internet of Things technology, it has the effect of lowering the accident rate at the construction site and shortening the construction period. In order to introduce a digital twin platform for construction site management, real-time construction site management is possible in real time by constructing the same virtual space. The digital twin virtual space construction method collects and processes data from the entire construction cycle and visualizes it using a 3D model file. In this paper, we introduce a modeling automation technique that constructs an efficient digital twin space by automatically generating 3D modeling that composes a digital twin space based on 3D spatial data.

Modeling and Verification of Eco-Driving Evaluation

  • Lin Liu;Nenglong Hu;Zhihu Peng;Shuxian Zhan;Jingting Gao;Hong Wang
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.296-306
    • /
    • 2024
  • Traditional ecological driving (Eco-Driving) evaluations often rely on mathematical models that predominantly offer subjective insights, which limits their application in real-world scenarios. This study develops a robust, data-driven Eco-Driving evaluation model by integrating dynamic and distributed multi-source data, including vehicle performance, road conditions, and the driving environment. The model employs a combination weighting method alongside K-means clustering to facilitate a nuanced comparative analysis of Eco-Driving behaviors across vehicles with identical energy consumption profiles. Extensive data validation confirms that the proposed model is capable of assessing Eco-Driving practices across diverse vehicles, roads, and environmental conditions, thereby ensuring more objective, comprehensive, and equitable results.

Modeling and Analysis of Leakage Currents in PWM-VSI-Fed PMSM Drives for Air-Conditioners with High Accuracy and within a Wide Frequency Range

  • Sun, Kai;Lu, Yangjun;Xing, Yan;Huang, Lipei
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.970-981
    • /
    • 2016
  • Leakage currents occur in pulse-width-modulated voltage source inverter (PWM-VSI)-fed permanent magnet synchronous motor (PMSM) drives for air-conditioners, which seriously affect system safety and operation performance. High accuracy modeling and prediction of leakage currents are key issues for the design and implementation of air-conditioning products. In this study, the generation mechanism of leakage currents is discussed. A systematic modeling approach of leakage currents is proposed, including the modeling of leakage current sources and leakage current paths. By using the proposed approach, the complete model of leakage currents in PWM-VSI-fed PMSM drives for air-conditioners has been developed based on the extraction of all parameters. A comparison between the simulated leakage currents based on the developed model and measured leakage currents in the outdoor unit of an air-conditioning product is conducted. The comparison verifies the effectiveness of the proposed modeling approach, and the developed model exhibits high accuracy within a wide frequency range.