• Title/Summary/Keyword: Modeling Approach

Search Result 3,482, Processing Time 0.029 seconds

Damage prediction in the vicinity of an impact on a concrete structure: a combined FEM/DEM approach

  • Rousseau, Jessica;Frangin, Emmanuel;Marin, Philippe;Daudeville, Laurent
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.343-358
    • /
    • 2008
  • This article focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. The proposed approach is then applied to a rock impact on a concrete slab in order to validate the coupled method and compare computation times.

Multiscale approach to predict the effective elastic behavior of nanoparticle-reinforced polymer composites

  • Kim, B.R.;Pyo, S.H.;Lemaire, G.;Lee, H.K.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.173-185
    • /
    • 2011
  • A multiscale modeling scheme that addresses the influence of the nanoparticle size in nanocomposites consisting of nano-sized spherical particles embedded in a polymer matrix is presented. A micromechanics-based constitutive model for nanoparticle-reinforced polymer composites is derived by incorporating the Eshelby tensor considering the interface effects (Duan et al. 2005a) into the ensemble-volume average method (Ju and Chen 1994). A numerical investigation is carried out to validate the proposed micromechanics-based constitutive model, and a parametric study on the interface moduli is conducted to investigate the effect of interface moduli on the overall behavior of the composites. In addition, molecular dynamics (MD) simulations are performed to determine the mechanical properties of the nanoparticles and polymer. Finally, the overall elastic moduli of the nanoparticle-reinforced polymer composites are estimated using the proposed multiscale approach combining the ensemble-volume average method and the MD simulation. The predictive capability of the proposed multiscale approach has been demonstrated through the multiscale numerical simulations.

Simple method for static and dynamic analyses of guyed towers

  • Meshmesha, H.;Sennah, K.;Kennedy, J.B.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.635-649
    • /
    • 2006
  • The static and dynamic responses of guyed telecommunication towers can be determined by using two models, the space truss element model, and the equivalent beam-column element model. The equivalent beam-column analysis is based on the determination of the equivalent shear, torsion, and bending rigidities as well as the equivalent area of the guyed mast. In the literature, two methods are currently available to determine the equivalent properties of lattice structures, namely: the unit load method, and the energy approach. In this study, an equivalent beam-column analysis is introduced based on an equivalent thin plate approach for lattice structures. A finite-element modeling, using suitably modified ABAQUS software, is used to investigate the accuracy of utilizing the different proposed methods in determining the static and dynamic responses of a guyed tower of 364.5-meter high subjected to static and seismic loading conditions. The results from these analyses are compared to those obtained from a finite-element modeling of the actual structure using 3-D truss and beam elements. Good agreement is shown between the different proposed beam-column models, and the model of the actual structure. However, the proposed equivalent thin plate approach is simpler to apply than the other two approaches.

Additive 2D and 3D performance ratio analysis for steel outrigger alternative design

  • Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1133-1153
    • /
    • 2016
  • In this article, an additive performance ratio method using structural analysis of both 2D and 3D is introduced to mitigate the complexity of work evaluating structural performances of numerous steel outrigger alternatives in multi-story buildings, especially high-rise buildings. The combined structural analysis process enables to be the design of economic, safe, and as constructional demanding structures by exploiting the advantages of steel, namely: excellent energy dissipation and ductility. First the approach decides the alternative of numerous steel outriggers by a simple 2D analysis module and then the alternative is evaluated by 3D analysis module. Initial structural analyses of outrigger types are carried out through MIDAS Gen 2D modeling, approximately, and then the results appeal structural performance and lead to decide some alternative of outrigger types. ETABS 3D modeling is used with respect to realization and evaluation of exact structural behaviors. The approach reduces computational burden in compared to existing concepts such as full 3D analysis methods. The combined 2D and 3D tools are verified by cycle and displacement tests including comprehensive nonlinear dynamic simulations. The advantages and limitations of the Additive Performance Ratio Approach are highlighted in a case study on a high rise steel-composite building, which targets at designing the optimized alternative to the existing original outrigger for lateral load resisting system.

Winkler spring behavior in FE analyses of dowel action in statically loaded RC cracks

  • Figueira, Diogo;Sousa, Carlos;Neves, Afonso Serra
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.593-605
    • /
    • 2018
  • A nonlinear finite element modeling approach is developed to assess the behavior of a dowel bar embedded on a single concrete block substrate, subjected to monotonic loading. In this approach, a discrete representation of the steel reinforcing bar is considered, using beam finite elements with nonlinear material behavior. The bar is connected to the concrete embedment through nonlinear Winkler spring elements. This modeling approach can only be used if a new constitutive model is developed for the spring elements, to simulate the deformability and strength of the concrete substrate. To define this constitutive model, an extensive literature review was conducted, as well as 3 experimental tests, in order to select the experimental data which can be used in the calibration of the model. Based on this data, an empirical model was established to predict the global dowel response, for a wide range of bar diameters and concrete strengths. This empirical model provided the information needed for calibration of the nonlinear Winkler spring model, valid for dowel displacements up to 4 mm. This new constitutive model is composed by 5 stages, in order to reproduce the concrete substrate response.

An artificial neural network residual kriging based surrogate model for curvilinearly stiffened panel optimization

  • Sunny, Mohammed R.;Mulani, Sameer B.;Sanyal, Subrata;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.235-251
    • /
    • 2016
  • We have performed a design optimization of a stiffened panel with curvilinear stiffeners using an artificial neural network (ANN) residual kriging based surrogate modeling approach. The ANN residual kriging based surrogate modeling involves two steps. In the first step, we approximate the objective function using ANN. In the next step we use kriging to model the residue. We optimize the panel in an iterative way. Each iteration involves two steps-shape optimization and size optimization. For both shape and size optimization, we use ANN residual kriging based surrogate model. At each optimization step, we do an initial sampling and fit an ANN residual kriging model for the objective function. Then we keep updating this surrogate model using an adaptive sampling algorithm until the minimum value of the objective function converges. The comparison of the design obtained using our optimization scheme with that obtained using a traditional genetic algorithm (GA) based optimization scheme shows satisfactory agreement. However, with this surrogate model based approach we reach optimum design with less computation effort as compared to the GA based approach which does not use any surrogate model.

Human Face Tracking and Modeling using Active Appearance Model with Motion Estimation

  • Tran, Hong Tai;Na, In Seop;Kim, Young Chul;Kim, Soo Hyung
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.49-56
    • /
    • 2017
  • Images and Videos that include the human face contain a lot of information. Therefore, accurately extracting human face is a very important issue in the field of computer vision. However, in real life, human faces have various shapes and textures. To adapt to these variations, A model-based approach is one of the best ways in which unknown data can be represented by the model in which it is built. However, the model-based approach has its weaknesses when the motion between two frames is big, it can be either a sudden change of pose or moving with fast speed. In this paper, we propose an enhanced human face-tracking model. This approach included human face detection and motion estimation using Cascaded Convolutional Neural Networks, and continuous human face tracking and modeling correction steps using the Active Appearance Model. A proposed system detects human face in the first input frame and initializes the models. On later frames, Cascaded CNN face detection is used to estimate the target motion such as location or pose before applying the old model and fit new target.

Case studies for modeling magnetic anomalies with COMSOL Multiphysics® (콤솔 멀티피직스를 활용한 지자기장 모델링 사례 연구)

  • Ha, Goeun;Kim, Seung-Sep
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.677-682
    • /
    • 2018
  • Magnetic anomalies are sensitive to magnetic properties present in deep Earth and near surface structures. Such geophysical characteristics often can be quantified by numerical analyses. In this study, we developed a finite element method (FEM) approach to compute magnetic anomalies using COMOL $Multiphysics^{(R)}$. This FEM approach was verified by comparing its numerical results with the previously known analytic solution for a uniformly magnetized sphere. Then, we used the method to compute magnetic reversal patterns near mid-ocean ridge with various faulting scenarios. This COMSOL-based approach can be incorporated into advanced multi-physical numerical models to understand the Earth.

Methods for Assessing the Innovative Capacity of Agri-food Enterprises

  • Orlova-Kurilova, Olga;Liubimov, Ivan;Yaremovich, Petr;Safronska, Iryna;Voron'ko-Nevidnycha, Tetiana;Dziuba, Mykola;Serhiienko, Serhii;Tkachenko, Volodymyr
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.503-512
    • /
    • 2021
  • The article proposes a methodical approach to assessing the innovative capacity of agri-food enterprises. This approach is based on the calculation of personnel, investment, technical and technological, information components of the ability of agri-food enterprises to innovate. The algorithm of search of production, intellectual, financial, information resources reserves, which are necessary for functioning of the enterprises of agro-food sphere, is defined. The approach developed by the authors, in contrast to the existing ones in the scientific world, allows the tools of mathematical modeling to identify shortcomings in the development of agri-food enterprises, to forecast the development of these enterprises and on this basis to form different models of market stakeholders. The method proposed by the authors to assess the innovative capacity of agri-food enterprises allows market participants to assess the current state of agri-food enterprises and form the necessary management levers to influence its activities to eliminate market failures and pitfalls.

Evaluation of Accuracy and Efficiency of Double Fourier Series (DFS) Spectral Dynamical Core (이중 푸리에 급수 분광법 역학코어의 정확도와 계산 효율성 평가)

  • Beom-Seok Kim;Myung-Seo Koo;Seok-Woo Son
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.387-398
    • /
    • 2023
  • The double Fourier series (DFS) spectral dynamical core is evaluated for the two idealized test cases in comparison with the spherical harmonics (SPH) spectral dynamical core. A new approach in calculating the meridional expansion coefficients of DFS, which was recently developed to alleviate a computational error but only applied to the 2D spherical shallow water equation, is also tested. In the 3D deformational tracer transport test, the difference is not conspicuous between SPH and DFS simulations, with a slight outperformance of the new DFS approach in terms of undershooting problem. In the baroclinic wave development test, the DFS-simulated wave pattern is quantitatively similar to the SPH-simulated one at high resolutions, but with a substantially lower computational cost. The new DFS approach does not offer a salient advantage compared to the original DFS while computation cost slightly increases. This result suggests that the current DFS spectral method can be a practical and alternative dynamical core for high-resolution global modeling.