• 제목/요약/키워드: Modeling Approach

검색결과 3,482건 처리시간 0.032초

Time Series Perturbation Modeling Algorithm : Combination of Genetic Programming and Quantum Mechanical Perturbation Theory (시계열 섭동 모델링 알고리즘 : 운전자 프로그래밍과 양자역학 섭동이론의 통합)

  • Lee, Geum-Yong
    • The KIPS Transactions:PartB
    • /
    • 제9B권3호
    • /
    • pp.277-286
    • /
    • 2002
  • Genetic programming (GP) has been combined with quantum mechanical perturbation theory to make a new algorithm to construct mathematical models and perform predictions for chaotic time series from real world. Procedural similarities between time series modeling and perturbation theory to solve quantum mechanical wave equations are discussed, and the exemplary GP approach for implementing them is proposed. The approach is based on multiple populations and uses orthogonal functions for GP function set. GP is applied to original time series to get the first mathematical model. Numerical values of the model are subtracted from the original time series data to form a residual time series which is again subject to GP modeling procedure. The process is repeated until predetermined terminating conditions are met. The algorithm has been successfully applied to construct highly effective mathematical models for many real world chaotic time series. Comparisons with other methodologies and topics for further study are also introduced.

Digital Hanbok Modeling for Virtual Characters : A Knowledge-driven Approach (가상캐릭터의 디지털 한복 모델링을 위한 지식기반 접근법)

  • Lee Bo-Ran;Oh Sue-Jung;Nam Yang-Hee
    • The KIPS Transactions:PartB
    • /
    • 제11B권6호
    • /
    • pp.683-690
    • /
    • 2004
  • Garment modeling and simulation is now one of the important elements in broad range of digital contents. Though there have been recent products on garment simulation, general users do not know well enough how to design a virtual costume that meets some requirements about its specific clothing pattern. In particular, Hanbok - the Korean traditional costume - has many different characteristics against western ones in the aspect of its pattern design and of draping. This paper presents a knowledge-driven approach for virtual Hanbok modeling without knowing how to make real Hanbok. First, parameterized knowledge for several fabric types art solicited using visual similarity assessment from simulated and real cloth. Secondly, based on the analysis of designer's knowledge, we defined multi-level adjustment processes of Hanbok measurements with regard to body shape features for different virtual actors. An experimental system is developed as the form of a Maya plug-in and the result shows the applicability of the proposed method.

Combining Ego-centric Network Analysis and Dynamic Citation Network Analysis to Topic Modeling for Characterizing Research Trends (자아 중심 네트워크 분석과 동적 인용 네트워크를 활용한 토픽모델링 기반 연구동향 분석에 관한 연구)

  • Yu, So-Young
    • Journal of the Korean Society for information Management
    • /
    • 제32권1호
    • /
    • pp.153-169
    • /
    • 2015
  • The combined approach of using ego-centric network analysis and dynamic citation network analysis for refining the result of LDA-based topic modeling was suggested and examined in this study. Tow datasets were constructed by collecting Web of Science bibliographic records of White LED and topic modeling was performed by setting a different number of topics on each dataset. The multi-assigned top keywords of each topic were re-assigned to one specific topic by applying an ego-centric network analysis algorithm. It was found that the topical cohesion of the result of topic modeling with the number of topic corresponding to the lowest value of perplexity to the dataset extracted by SPLC network analysis was the strongest with the best values of internal clustering evaluation indices. Furthermore, it demonstrates the possibility of developing the suggested approach as a method of multi-faceted research trend detection.

Finite element modeling of corroded RC beams using cohesive surface bonding approach

  • Al-Osta, Mohammed A.;Al-Sakkaf, Hamdi A.;Sharif, Alfarabi M.;Ahmad, Shamsad;Baluch, Mohammad H.
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.167-182
    • /
    • 2018
  • The modeling of loss of bond between reinforcing bars (rebars) and concrete due to corrosion is useful in studying the behavior and prediction of residual load bearing capacity of corroded reinforced concrete (RC) members. In the present work, first the possibility of using different methods to simulate the rebars-concrete bonding, which is used in three-dimensional (3D) finite element (FE) modeling of corroded RC beams, was explored. The cohesive surface interaction method was found to be most suitable for simulating the bond between rebars and concrete. Secondly, using the cohesive surface interaction approach, the 3D FE modeling of the behavior of non-corroded and corroded RC beams was carried out in an ABAQUS environment. Experimental data, reported in literature, were used to validate the models. Then using the developed models, a parametric study was conducted to examine the effects of some parameters, such as degree and location of the corrosion, on the behavior and residual capacity of the corroded beams. The results obtained from the parametric analysis using the developed model showed that corrosion in top compression rebars has very small effect on the flexural behaviors of beams with small flexural reinforcement ratio that is less than the maximum ratio specified in ACI-318-14 (singly RC beam). In addition, the reduction of steel yield strength in tension reinforcement due to corrosion is the main source of reducing the load bearing capacity of corroded RC beams. The most critical corrosion-induced damage is the complete loss of bond between rebars and the concrete as it causes sudden failure and the beam acts as un-reinforced beam.

Ontological Modeling of E-Catalogs using Description Logic (Description Logic을 이용한 전자카타로그 온톨로지 모델링)

  • Lee Hyunja;Shim Junho
    • Journal of KIISE:Databases
    • /
    • 제32권2호
    • /
    • pp.111-119
    • /
    • 2005
  • Electronic catalog contains ich semantics associated with products, and serves as a challenging practical domain for ontology application. Ontology is concerned with the nature and relations of being. It can play a crucial role in e-commerce as a formalization of e-Catalogs. Description Logics provide a theoretical core for most of the current ontology languages. In this paper, we present an ontological model of e-Catalogs in DL. We take an Extended Entity Relationship approach for conceptual modeling method, and present the fundamental set of modeling constructs and corresponding description language representation for each construct. Additional semantic knowledge can be represented directly in DL. Our modeling language stands within SHIQ(d) which is known reasonably practical with regard to its expressiveness and complexity. We illustrate sample scenarios to show how our approach may be utilized in modeling e-Catalogs, and also implement the scenarios through a DL inference tool to see the practical feasibility.

Applicability Investigation for the Odor Source Tracking Approach using the Wind Field and the Fingerprinting (바람장 및 Fingerprint를 이용한 악취추적기법 활용가능성 평가)

  • Na, Kyung-Ho;Bak, Yong-Chul;Jang, Young-Gi
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제23권1호
    • /
    • pp.1-13
    • /
    • 2007
  • This study was carried out to evaluate the applicability of the odor source tracking using wind field and fingerprint as a solution tool. First of all, CALMET and HYSPLIT modeling system, and database of odor discharge companies were utilized to track odor from industrial complexes. Secondly, industrial odor fingerprint was made by listing on the 19 domestic industries, and compared with foreign data to assess the representative, and thus the similarity was 86.7%. On the modeling experiment, Sihwa industrial complex did not show any difference because the matching rates of day and night were 49.5% and 50.0%, respectively. However, the Banwol and Sihwa industrial complexes did show some differences due to odor facility density. Separately, in this study, odor samples were obtained from 10 odor discharging companies, located in the Sihwa and Banwol industrial complexes, They were compared with the results of odor tracking modeling. The matched companies were 4 of 10 by three cases of tracking, while the fingerprint and industry of odor monitoring networks and companies matched each other. Therefore, this study confirmed the approach applicability of source tracking system using the fingerprint.

Agent Based Modeling and Simulation of Structural Hole Based Order Allocation Strategy (구조적 공백 기반 주문 분배 전략의 에이전트 기반 모델링 및 시뮬레이션)

  • Kim, Dae-Young;Kang, Bok-Young;Kang, Suk-Ho
    • Korean Management Science Review
    • /
    • 제29권1호
    • /
    • pp.153-168
    • /
    • 2012
  • Order allocation is one of the most important decision-making problems of firms having significant influences on performances of themselves and the whole supply chain. Existing researches about order allocation have mainly focused on evaluating capabilities of directly connected suppliers so that it is hard to consider effects and interactions from undirected connections over multiple lower-layers. To alleviate the limitation, this paper proposed a novel approach to order allocation using structural hole. By applying the concept of structural hole to the supply network, we could evaluate the structural supplying powers of firms with respect to both of direct and indirect connections. In the proposed approach, we derived a methodology to measure the potential supplying power of each firm by modifying the effective size as one of the measurements of structural hole and then, proposed its application, the structural hole based order allocation strategy. Furthermore, we conducted the agent based modeling of supply chain to perform the decision-making process of order allocation and simulated the proposed strategy. As a results, by coping with the variance of demand more stably, it could improve the performance of supply chain from the aspects of fill rate, inventory level and demand-supply balance.

Wind flow simulations in idealized and real built environments with models of various level of complexity

  • Abdi, Daniel S.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • 제22권4호
    • /
    • pp.503-524
    • /
    • 2016
  • The suitability of Computational Fluid Dynamics (CFD) simulations on the built environment for the purpose of estimating average roughness characteristics and for studying wind flow patterns within the environment is assessed. Urban models of various levels of complexity are considered including an empty domain, array of obstacles arranged in regular and staggered manners, in-homogeneous roughness with multiple patches, a semi-idealized built environment, and finally a real built environment. For each of the test cases, we conducted CFD simulations using RANS turbulence closure and validated the results against appropriate methods: existing empirical formulas for the homogeneous roughness case, empirical wind speed models for the in-homogeneous roughness case, and wind tunnel tests for the semi-idealized built environment case. In general, results obtained from the CFD simulations show good agreement with the corresponding validation methods, thereby, giving further evidence to the suitability of CFD simulations for built environment studies consisting of wide-ranging roughness. This work also provides a comprehensive overview of roughness modeling in CFD-from the simplest approach of modeling roughness implicitly through wall functions to the most elaborate approach of modeling roughness explicitly for the sake of accurate wind flow simulations within the built environment.

MULTISCALE MODELING OF RADIATION EFFECTS ON MATERIALS: PRESSURE VESSEL EMBRITTLEMENT

  • Kwon, Jun-Hyun;Lee, Gyeong-Geun;Shin, Chan-Sun
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.11-20
    • /
    • 2009
  • Radiation effects on materials are inherently multiscale phenomena in view of the fact that various processes spanning a broad range of time and length scales are involved. A multiscale modeling approach to embrittlement of pressure vessel steels is presented here. The approach includes an investigation of the mechanisms of defect accumulation, microstructure evolution and the corresponding effects on mechanical properties. An understanding of these phenomena is required to predict the behavior of structural materials under irradiation. We used molecular dynamics (MD) simulations at an atomic scale to study the evolution of high-energy displacement cascade reactions. The MD simulations yield quantitative information on primary damage. Using a database of displacement cascades generated by the MD simulations, we can estimate the accumulation of defects over diffusional length and time scales by applying kinetic Monte Carlo simulations. The evolution of the local microstructure under irradiation is responsible for changes in the physical and mechanical properties of materials. Mechanical property changes in irradiated materials are modeled by dislocation dynamics simulations, which simulate a collective motion of dislocations that interact with the defects. In this paper, we present a multi scale modeling methodology that describes reactor pressure vessel embrittlement in a light water reactor environment.

Network-centric CAD

  • Lee, Jae-Yeol;Kim, Hyun;Lee, Joo-Haeng;Do, Nam-Chul;Kim, Hyung-Sun
    • Proceedings of the CALSEC Conference
    • /
    • 한국전자거래학회 2001년도 International Conference CALS/EC KOREA
    • /
    • pp.615-624
    • /
    • 2001
  • Internet technology opens up another domain for building future CAD/CAM environment. The environment will be global, network-centric, and spatially distributed. In this paper, we present a new approach to network-centric virtual prototyping (NetVP) in a distributed design environment. The presented approach combines the current virtual assembly modeling and analysis technique with distributed computing and communication technology fur supporting virtual prototyping activities over the network. This paper focuses on interoperability, shape representation, and geometric processing for distributed virtual prototyping. STEP standard and CORBA-based interfaces allow the bi-directional communication between the CAD model and virtual prototyping model, which makes it possible to solve the problems of interoperability, heterogeneity of platforms, and data sharing. STEP AP203 and AP214 are utilized as a means of transferring and sharing product models. In addition, Attributed Abstracted B-rep (AAB) is introduced as 3D shape abstraction for transparent and efficient transmission of 3D models and for the maintenance of naming consistency between CAD models and virtual prototyping models over the network.

  • PDF