• Title/Summary/Keyword: Modeling&Simulation

Search Result 6,615, Processing Time 0.036 seconds

Optimal Wrist Design of Wrist-hollow Type 6-axis Articulated Robot using Genetic Algorithm (유전자 알고리즘을 이용한 손목 중공형 6축 수직다관절 로봇의 최적 손목 설계에 관한 연구)

  • Jo, Hyeon Min;Chung, Won Jee;Bae, Seung Min;Choi, Jong Kap;Kim, Dae Young;Ahn, Yeon Joo;Ahn, Hee Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.109-115
    • /
    • 2019
  • In arc-welding applying to the present automobile part manufacturing process, a wrist-hollow type arc welding robot can shorten the welding cycle time, because feedability of a welding wire is not affected by a robot posture and thus facilitates high-quality arc welding, based on stable feeding with no entanglement. In this paper, we will propose the optimization of wrist design for a wrist-hollow type 6-Axis articulated robot. Specifically, we will perform the investigation on the optimized design of inner diameter of hollow arms (Axis 4 and Axis 6) and width of the upper arm by using the simulation of robot motion characteristics, using a Genetic Algorithm (i.e., GA). Our simulations are based on $SolidWorks^{(R)}$ for robot modeling, $MATLAB^{(R)}$ for GA optimization, and $RecurDyn^{(R)}$ for analyzing dynamic characteristics of a robot. Especially $RecurDyn^{(R)}$ is incorporated in the GA module of $MATLAB^{(R)}$ for the optimization process. The results of the simulations will be verified by using $RecurDyn^{(R)}$ to show that the driving torque of each axis of the writs-hollow 6-axis robot with the optimized wrist design should be smaller than the rated output torque of each joint servomotor. Our paper will be a guide for improving the wrist-hollow design by optimizing the wrist shape at a detail design stage when the driving torque of each joint for the wrist-hollow 6-axis robot (to being developed) is not matched with the servomotor specifications.

Evaluation of Optimum Spacing between Anchor Bodies of Distributive Compression Anchor Using Numerical Simulation (수치해석을 이용한 압축 분산형 앵커의 내하체 최적 간격 산정)

  • Gu, Kyo-Young;Shin, Gyu-Bum;Chung, Choong-Ki;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.7
    • /
    • pp.29-39
    • /
    • 2019
  • Load distributive compression anchors distribute the compressive stress in the grout and increase the pull-out capacity of the anchor by using multiple anchor bodies. In this anchor type, the spacing between the anchor bodies has a large influence on the stress in the grout. However, there are few researches about the spacing and there are no design standards. Therefore, the effect of the anchor body spacing on the grout stress was analyzed by performing finite element analyses. First, the applicability of the numerical modeling was verified by comparing with field test results of a compression anchor. Then, the parametric study was performed varying soil type, anchor body spacing, and load magnitude. The analysis results showed that the maximum compressive stress in the grout increased at the narrower spacing and the tensile stress developed at the wider spacing. Therefore, the optimum spacing was defined as the spacing, which prevents the superposition of compressive stresses and minimize the tensile stress. Finally, the optimum spacing was proposed according to the soil type and the load magnitude.

Analysis of Abnormal Path Loss in Jeju Coastal Area Using Duct Map (덕트맵을 이용한 제주해안지역 이상 전파특성 분석)

  • Wang, Sungsik;Lim, Tae-Heung;Chong, Young Jun;Go, Minho;Park, Yong Bae;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.223-228
    • /
    • 2019
  • This study analyzes the propagation of the path losses between Jeju-do and Jin-do transceivers located in the coastal areas of Korea using the Advanced Refractive Prediction System(AREPS) simulation software based on the actual coastal weather database. The simulated data is used to construct a duct map according to the altitude and thickness of the trap. The duct map is then divided into several regions depending on the altitude parameters of Tx and Rx, which can be used to effectively estimate the abnormal wave propagation characteristics due to duct occurrence in the Jeju-do coastal area. To validate the proposed duct map, two representative atmospheric index samples of the weather database in May 2018 are selected, and the simulated path losses using these atmospheric indices are compared with the measured data. The simulated path losses for abnormal conditions at the Rx point at Jeju-do are 167.7 dB and 192.3 dB, respectively, which are in good agreement with the measured data of 164.4 dB and 194.9 dB, respectively.

Mechanical Properties of Metallic Additive Manufactured Lattice Structures according to Relative Density (상대 밀도에 따른 금속 적층 제조 격자 구조체의 기계적 특성)

  • Park, Kwang-Min;Kim, Jung-Gil;Roh, Young-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.19-26
    • /
    • 2021
  • The lattice structure is attracting attention from industry because of its excellent strength and stiffness, ultra-lightweight, and energy absorption capability. Despite these advantages, widespread commercialization is limited by the difficult manufacturing processes for complex shapes. Additive manufacturing is attracting attention as an optimal technology for manufacturing lattice structures as a technology capable of fabricating complex geometric shapes. In this study, a unit cell was formed using a three-dimensional coordinate method. The relative density relational equation according to the boundary box size and strut radius of the unit cell was derived. Simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) with a controlled relative density were designed using modeling software. The accuracy of the equations for calculating the relative density proposed in this study secured 98.3%, 98.6%, and 96.2% reliability in SC, BCC, and FCC, respectively. A simulation of the lattice structure revealed an increase in compressive yield load with increasing relative density under the same cell arrangement condition. The compressive yield load decreased in the order of SC, BCC, and FCC under the same arrangement conditions. Finally, structural optimization for the compressive load of a 20 mm × 20 mm × 20 mm structure was possible by configuring the SC unit cells in a 3 × 3 × 3 array.

A study on Deep Operations Effect Analysis for Realization of Simultaneous Offense-Defence Integrated Operations (공방동시통합작전 구현을 위한 종심작전 효과분석 연구)

  • Cho, Jung Keun;Yoo, Byung Joo;Han, Do Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.116-126
    • /
    • 2021
  • Ground Component Command (GCC) has been developing operational planning and execution systems to implement "Decisive Integrated Operations", which is the concept of ground operations execution, and achieved remarkable results. In particular, "Simultaneous Offense-Defense Integrated Operations" is developed mainly to neutralize enemies in deep areas and develop favorable conditions for the allies early by simultaneously attacking and defending from the beginning of the war. On the other hand, it is limited to providing scientific and reasonable support for the commander's decision-making process because analyzing the effects of the deep operation with existing M&S systems is impossible. This study developed a model for analyzing the effects of deep operations that can be used in the KJCCS. Previous research was conducted on the effects of surveillance, physical strike, and non-physical strike, which are components of deep operations to find the characteristics and limitations and suggest a research direction. A methodology for analyzing the effects of deep operations reflecting the interactions of components using data was then developed by the GCC, and input data for each field was calculated through combat experiments and a literature review. Finally, the Deep operations Effect CAlculating Model(DECAM) was developed and distributed to the GCC and Corps battle staff during the ROK-US Combined Exercise. Through this study, the effectiveness of the methodology and the developed model were confirmed and contribute to the development of the GCC and Corps' abilities to perform deep operations.

Structural Behavior Evaluation of a Cable-Stayed Bridge Subjected to Aircraft Impact: A Numerical Study (항공기 충돌에 대한 사장교의 구조거동 평가: 수치해석적 접근)

  • Choi, Keunki;Lee, Jungwhee;Chung, Chul-Hun;An, Dongwoo;Yoon, Jaeyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.137-149
    • /
    • 2021
  • Cable-stayed bridges are infrastructure facilities of a highly public nature; therefore, it is essential to ensure operational safety and prompt response in the event of a collapse or damage caused by natural and social disasters. Among social disasters, impact accidents can occur in bridges when a vehicle collides with a pier or when crashes occur due to aircraft defects. In the case of offshore bridges, ship collisions will occur at the bottom of the pylon. In this research, a procedure to evaluate the structural behavior of a cable-stayed bridge for aircraft impact is suggested based on a numerical analysis approach, and the feasibility of the procedure is demonstrated by performing an example assessment. The suggested procedure includes 1) setting up suitable aircraft impact hazard scenarios, 2) structural modeling considering the complex behavior mechanisms of cable-stayed bridges, and 3) structural behavior evaluation of cable-stayed bridges using numerical impact simulation. It was observed that the scenario set in this study did not significantly affect the target bridge. However, if impact analysis is performed through various scenarios in the future, the load position and critical load level to cause serious damage to the bridge could be identified. The scenario-based assessment process employed in this study is expected to facilitate the evaluation of bridge structures under aircraft impact in both existing bridges and future designs.

Analysis of Hydraulic Fracture Geometry by Considering Stress Shadow Effect during Multi-stage Hydraulic Fracturing in Shale Formation (셰일저류층의 다단계 수압파쇄에서 응력그림자 효과를 고려한 균열형태 분석)

  • Yoo, Jeong-min;Park, Hyemin;Wang, Jihoon;Sung, Wonmo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.20-29
    • /
    • 2021
  • During multi-stage fracturing in a low permeable shale formation, stress interference occurs between the stages which is called the "stress shadow effect(SSE)". The effect may alter the fracture propagation direction and induce ununiform geometry. In this study, the stress shadow effect on the hydraulic fracture geometry and the well productivity were investigated by the commercial full-3D fracture model, GOHFER. In a homogeneous reservoir model, a multi-stage fracturing process was performed with or without the SSE. In addition, the fracturing was performed on two shale reservoirs with different geomechanical properties(Young's modulus and Poisson's ratio) to analyze the stress shadow effect. In the simulation results, the stress change caused by the fracture created in the previous stage switched the maximum/minimum horizontal stress and the lower productivity L-direction fracture was more dominating over the T-direction fracture. Since the Marcellus shale is more brittle than more dominating over the T-direction fracture. Since the Marcellus shale is more brittle than the relatively ductile Eagle Ford shale, the fracture width in the former was developed thicker, resulting in the larger fracture volume. And the Marcellus shale's Young's modulus is low, the stress effect is less significant than the Eagle Ford shale in the stage 2. The stress shadow effect strongly depends on not only the spacing between fractures but also the geomechanical properties. Therefore, the stress shadow effect needs to be taken into account for more accurate analysis of the fracture geometry and for more reliable prediction of the well productivity.

A Study of VR Interaction for Non-contact Hair Styling (비대면 헤어 스타일링 재현을 위한 VR 인터렉션 연구)

  • Park, Sungjun;Yoo, Sangwook;Chin, Seongah
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.367-372
    • /
    • 2022
  • With the recent advent of the New Normal era, realistic technologies and non-contact technologies are receiving social attention. However, the hair styling field focuses on the direction of the hair itself, individual movements, and modeling, focusing on hair simulation. In order to create an improved practice environment and demand of the times, this study proposed a non-contact hair styling VR system. In the theoretical review, we studied the existing cases of hair cut research. Existing haircut-related research tend to be mainly focused on force-based feedback. Research on the interactive haircut work in the virtual environment as addressed in this paper has not been done yet. VR controllers capable of finger tracking the movements necessary for beauty enable selection, cutting, and rotation of beauty tools, and built a non-contact collaboration environment. As a result, we conducted two experiments for interactive hair cutting in VR. First, it is a haircut operation for synchronization using finger tracking and holding hook animation. We made position correction for accurate motion. Second, it is a real-time interactive cutting operation in a multi-user virtual collaboration environment. This made it possible for instructors and learners to communicate with each other through VR HMD built-in microphones and Photon Voice in non-contact situations.

A study on estimating the quick return flow from irrigation canal of agricultural water using watershed model (유역모델을 이용한 농업용수 신속회귀수량 산정 연구)

  • Lee, Jiwan;Jung, Chunggil;Kim, Daye;Maeng, Seungjin;Jeong, Hyunsik;Jo, Youngsik;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.321-331
    • /
    • 2022
  • In this study, we tried to present a method for calculating the amount of regression using a watershed modeling method that can simulate the hydrological mechanism of water balance analysis and agricultural water based on watershed unit. Using the soil water assessment tool (SWAT), a watershed water balance analysis was conducted considering the simulation of paddy fields for the Manbongcheon Standard Basin (97.34 km2), which is a representative agricultural area of the Yeongsan river basin. Before evaluating return flow, the SWAT was calibrated and validated using the daily streamflow observation data at Naju streamflow gauge station (NJ). The coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE), Root-Mean-Square Error (RMSE) of NJ were 0.73, 0.70, 0.64 mm/day. Based on the calibration results for three years (2015-2017), the quick return flow and the return rate compared to the water supply amount for the irrigation period (April 1 to September 30) were calculated, and the average return flow rate was 53.4%. The proposed method of this study may be used as foundation data to optimal agricultural water supply plan for rational watershed management.

Prediction of Change in Growth Rate of Algae in Jinhae Bay due to Cooling Water Discharge (냉배수 방류에 따른 진해만의 해조류 성장 속도 변화 예측)

  • Park, Seongsik;Yoon, Seokjin;Lee, In-Cheol;Kim, Byeong Kuk;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.308-323
    • /
    • 2021
  • In this study, we aimed to evaluate the environmental changes in Jinhae Bay caused by cooling water using numerical modeling. Cooling water discharge volume from the results of Case 1 (10 m3 sec-1) showed that the environmental changes in Jinhae Bay were extremely insignificant throughout the study period. In the simulation conditions of Case 2 (100 m3 sec-1), there was a decrease in water temperature of approximately 1 - 3℃ within a 5 km radius from the discharge outlet. In Case 3 (1000 m3 sec-1), a decrease in water temperature of up to 4 - 5℃ was observed within a radius of 8 km from the discharge outlet and cooling water discharge spread throughout the Bay. Growth rate of microalgae decreased by up to 15 % in November, whereas it increased by up to 6 % near the Hangam Bay in Case 3. From the above results, we confirmed that the environmental changes in Jinhae Bay due to cooling water discharged from Tongyeong LNG station are extremely insignificant. Moreover, it is expected that cooling water discharge could be utilized as a counter measure for 'red tide bloom' or 'macroalgae growth'.