The Transactions of The Korean Institute of Electrical Engineers
/
v.60
no.4
/
pp.848-855
/
2011
This paper proposes a method to reduce the limit cycle phenomenon that appears in the steady-state response of a pendubot system, when it is controlled by a state feedback controller based on the linearized system model. For this, we employed the compensator which estimates the friction based on the LuGre model in the LQR control. The proposed compensation method is validated by experiments for a pendubot system, which shows that the external disturbance as well can be efficiently compensated.
Laser vision inspection systems are becoming popular for automated inspection of manufactured components. The performance of such systems can be enhanced by improving accuracy of the hardware and robustness of the software used in the system. This paper presents a new approach for enhancing the capability of a laser vision system by applying hardware compensation and using efficient analysis software. A 3D geometrical model is developed to study and compensate for possible distortions in installation of gantry robot on which the vision system is mounted. Appropriate compensation is applied to the inspection data obtained from the laser vision system based on the parameters in 3D model. The present laser vision system is used for dimensional inspection of car chassis sub frame and lower arm assembly module. An algorithm based on simplex search techniques is used for analyzing the compensated inspection data. The details of 3D model, parameters used for compensation and the measurement data obtained from the system are presented in this paper. The details of search algorithm used for analyzing the measurement data and the results obtained are also presented in the paper. It is observed from the results that, by applying compensation and using appropriate algorithms for analyzing, the error in evaluation of the inspection data can be significantly minimized, thus reducing the risk of rejecting good parts.
This paper proposes an GMM(Gaussian Mixture Model)-DNN(Deep Neural Network) hybrid-based feature compensation method for effective speech recognition in noisy environments. In the proposed algorithm, the posterior probability for the conventional GMM-based feature compensation method is calculated using DNN. The experimental results using the Aurora 2.0 framework and database demonstrate that the proposed GMM-DNN hybrid-based feature compensation method shows more effective in Known and Unknown noisy environments compared to the GMM-based method. In particular, the experiments of the Unknown environments show 9.13 % of relative improvement in the average of WER (Word Error Rate) and considerable improvements in lower SNR (Signal to Noise Ratio) conditions such as 0 and 5 dB SNR.
Transactions of the Korean Society of Machine Tool Engineers
/
v.13
no.3
/
pp.16-23
/
2004
Thermally induced errors of machine tools have been recognized as one of the most important issues in precision machining. This is probably the most formidable obstacle to obtain high level of machining accuracy. To this regard, the experimental compensation methodologies such as software-based method or origin shift of machine tool axes have been suggested. In this research, to cope with thermal deformation, a model based correction was carried out with the function of an external machine coordinate shift. Models with multi-linear regression or neural network were investigated to selected a good one for thermal compensation. Consequently, multi-linear regression model combined with origin shift was verified good enough form the machining of dot matrices of plate with ball end milling.
Journal of the Korean Operations Research and Management Science Society
/
v.40
no.1
/
pp.129-138
/
2015
The problems associated with the excessive compensation of the public organizations in Korea have been presented not only by the press but also by the academic societies, including the management evaluation team of the public organizations, both in Korea and abroad. To analyze whether the compensation is excessive necessitates the empirical study on the present condition of the compensation system of the public organizations. Therefore, the purpose of this paper is to suggest the issues and the future directions of the compensation in the public organizations. The findings from the analysis of the data collected in this research include the expansion of the difference in compensation, the reinforcement of the job and performance-based compensation, the systematization of the model on the base compensation, and the differentiation of the compensation increase based on productivity.
This study was conducted to establish finance performance evaluation model for physicians in each clinical department, by using factors which determines financial outcome(performance) in each clinical department The ultimate aim of study is to develop effective performance-based pay system for physicians. The system, by motivating physicians, should increase their productivity. To do so, it is critical to establish finance performance evaluation model to achieve final goal of this study. 232 private hospitals were chosen from 693 hospitals which were subject to hospital survey by the Korea Institute of Health Services Management and their revenue and expense-related data during 1997 were collected. By adopting multiple regression method, the study shows that the evaluation model for each clinical department was statistically significant. The study suggest the effective performance-based pay system based on financial performance of each clinical department. The pay system includes the level of compensation, the way of how to allocate profits to each department, and criteria whether the compensation should provide or not. In conclusion, the study has following implications. First, the study suggest finance performance evaluation model for each clinical department Second, the study suggest guidelines and plans to establish qualitative measure of financial performance in each clinical department. Third, the study suggest that adopting performance-based pay for physicians could be impetus to achieve organizational goal by motivating them with fair compensation.
In this paper we apply PMC (parallel model combination) to speech recognition system online. As a representative of model based noise compensation techniques, PMC compensates environmental mismatch by combining pretrained clean speech models and real-time estimated noise information. This is very effective approach for compensating extreme environmental mismatch but is inadequate to use in on-line system for heavy computational cost. To reduce the computational cost and to apply PMC online, we use a noise masking effect - the energy in a frequency band is dominated either by clean speech energy or by noise energy - in the process of model compensation. Experiments on artificially produced noisy speech data confirm that the proposed technique is fast and effective for the on-line model compensation.
Objectives: Although compensation for occupational injuries and diseases is guaranteed in almost all nations, countries vary greatly with respect to how they organize workers' compensation systems. In this paper, we focus on three aspects of workers' compensation insurance in Organization for Economic Cooperation and Development (OECD) countries - types of systems, employers' funding mechanisms, and coverage for injured workers - and their impacts on the actual frequencies of occupational injuries and diseases. Methods: We estimated a panel data fixed effect model with cross-country OECD and International Labor Organization data. We controlled for country fixed effects, relevant aggregate variables, and dummy variables representing the occupational accidents data source. Results: First, the use of a private insurance system is found to lower the occupational accidents. Second, the use of risk-based pricing for the payment of employer raises the occupational injuries and diseases. Finally, the wider the coverage of injured workers is, the less frequent the workplace accidents are. Conclusion: Private insurance system, fixed flat rate employers' funding mechanism, and higher coverage of compensation scheme are significantly and positively correlated with lower level of occupational accidents compared with the public insurance system, risk-based funding system, and lower coverage of compensation scheme.
Proceedings of the Korean Society of Machine Tool Engineers Conference
/
2001.04a
/
pp.376-381
/
2001
This paper presents a methodology of machining error compensation by using Artificial Neural Network(ANN) model based on the inspection database of On-Machine-Measurement(OMM) system. First, the geometric errors of the machining center and the probing errors are significantly reduced through compensation processes. Then, we acquire machining error distributions from a specimen workpiece. In order to efficiently analyze the machining errors, we define two characteristic machining error parameters. These can be modeled by using an ANN model, which allows us to determine the machining errors in the domain of considered cutting conditions. Based on this ANN model, we try to correct the tool path in order to effectively reduce the errors by using an iterative algorithm. The iterative algorithm allows us to integrate changes of the cutting conditions according to the corrected tool path. Experimentation is carried out in order to validate the approaches proposed in this paper.
In this paper we propose an effective feature compensation scheme based on the speech model in order to achieve robust speech recognition. The proposed feature compensation method is based on parallel combined mixture model (PCMM). The previous PCMM works require a highly sophisticated procedure for estimation of the combined mixture model in order to reflect the time-varying noisy conditions at every utterance. The proposed schemes can cope with the time-varying background noise by employing the interpolation method of the multiple mixture models. We apply the‘data-driven’method to PCMM tot move reliable model combination and introduce a frame-synched version for estimation of environments posteriori. In order to reduce the computational complexity due to multiple models, we propose a technique for mixture sharing. The statistically similar Gaussian components are selected and the smoothed versions are generated for sharing. The performance is examined over Aurora 2.0 and speech corpus recorded while car-driving. The experimental results indicate that the proposed schemes are effective in realizing robust speech recognition and reducing the computational complexities under both simulated environments and real-life conditions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.