• Title/Summary/Keyword: Model-Based Testing

Search Result 1,612, Processing Time 0.024 seconds

Synthetic Computed Tomography Generation while Preserving Metallic Markers for Three-Dimensional Intracavitary Radiotherapy: Preliminary Study

  • Jin, Hyeongmin;Kang, Seonghee;Kang, Hyun-Cheol;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.172-178
    • /
    • 2021
  • Purpose: This study aimed to develop a deep learning architecture combining two task models to generate synthetic computed tomography (sCT) images from low-tesla magnetic resonance (MR) images to improve metallic marker visibility. Methods: Twenty-three patients with cervical cancer treated with intracavitary radiotherapy (ICR) were retrospectively enrolled, and images were acquired using both a computed tomography (CT) scanner and a low-tesla MR machine. The CT images were aligned to the corresponding MR images using a deformable registration, and the metallic dummy source markers were delineated using threshold-based segmentation followed by manual modification. The deformed CT (dCT), MR, and segmentation mask pairs were used for training and testing. The sCT generation model has a cascaded three-dimensional (3D) U-Net-based architecture that converts MR images to CT images and segments the metallic marker. The performance of the model was evaluated with intensity-based comparison metrics. Results: The proposed model with segmentation loss outperformed the 3D U-Net in terms of errors between the sCT and dCT. The structural similarity score difference was not significant. Conclusions: Our study shows the two-task-based deep learning models for generating the sCT images using low-tesla MR images for 3D ICR. This approach will be useful to the MR-only workflow in high-dose-rate brachytherapy.

Estimation of splitting tensile strength of modified recycled aggregate concrete using hybrid algorithms

  • Zhu, Yirong;Huang, Lihua;Zhang, Zhijun;Bayrami, Behzad
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.389-406
    • /
    • 2022
  • Recycling concrete construction waste is an encouraging step toward green and sustainable building. A lot of research has been done on recycled aggregate concretes (RACs), but not nearly as much has been done on concrete made with recycled aggregate. Recycled aggregate concrete, on the other hand, has been found to have a lower mechanical productivity compared to conventional one. Accurately estimating the mechanical behavior of the concrete samples is a most important scientific topic in civil, structural, and construction engineering. This may prevent the need for excess time and effort and lead to economic considerations because experimental studies are often time-consuming, costly, and troublous. This study presents a comprehensive data-mining-based model for predicting the splitting tensile strength of recycled aggregate concrete modified with glass fiber and silica fume. For this purpose, first, 168 splitting tensile strength tests under different conditions have been performed in the laboratory, then based on the different conditions of each experiment, some variables are considered as input parameters to predict the splitting tensile strength. Then, three hybrid models as GWO-RF, GWO-MLP, and GWO-SVR, were utilized for this purpose. The results showed that all developed GWO-based hybrid predicting models have good agreement with measured experimental results. Significantly, the GWO-RF model has the best accuracy based on the model performance assessment criteria for training and testing data.

The Flood Water Stage Prediction based on Neural Networks Method in Stream Gauge Station (하천수위표지점에서 신경망기법을 이용한 홍수위의 예측)

  • Kim, Seong-Won;Salas, Jose-D.
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.247-262
    • /
    • 2000
  • In this paper, the WSANN(Water Stage Analysis with Neural Network) model was presented so as to predict flood water stage at Jindong which has been the major stream gauging station in Nakdong river basin. The WSANN model used the improved backpropagation training algorithm which was complemented by the momentum method, improvement of initial condition and adaptive-learning rate and the data which were used for this study were classified into training and testing data sets. An empirical equation was derived to determine optimal hidden layer node between the hidden layer node and threshold iteration number. And, the calibration of the WSANN model was performed by the four training data sets. As a result of calibration, the WSANN22 and WSANN32 model were selected for the optimal models which would be used for model verification. The model verification was carried out so as to evaluate model fitness with the two-untrained testing data sets. And, flood water stages were reasonably predicted through the results of statistical analysis. As results of this study, further research activities are needed for the construction of a real-time warning of the impending flood and for the control of flood water stage with neural network method in river basin. basin.

  • PDF

An Ensemble Approach to Detect Fake News Spreaders on Twitter

  • Sarwar, Muhammad Nabeel;UlAmin, Riaz;Jabeen, Sidra
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.294-302
    • /
    • 2022
  • Detection of fake news is a complex and a challenging task. Generation of fake news is very hard to stop, only steps to control its circulation may help in minimizing its impacts. Humans tend to believe in misleading false information. Researcher started with social media sites to categorize in terms of real or fake news. False information misleads any individual or an organization that may cause of big failure and any financial loss. Automatic system for detection of false information circulating on social media is an emerging area of research. It is gaining attention of both industry and academia since US presidential elections 2016. Fake news has negative and severe effects on individuals and organizations elongating its hostile effects on the society. Prediction of fake news in timely manner is important. This research focuses on detection of fake news spreaders. In this context, overall, 6 models are developed during this research, trained and tested with dataset of PAN 2020. Four approaches N-gram based; user statistics-based models are trained with different values of hyper parameters. Extensive grid search with cross validation is applied in each machine learning model. In N-gram based models, out of numerous machine learning models this research focused on better results yielding algorithms, assessed by deep reading of state-of-the-art related work in the field. For better accuracy, author aimed at developing models using Random Forest, Logistic Regression, SVM, and XGBoost. All four machine learning algorithms were trained with cross validated grid search hyper parameters. Advantages of this research over previous work is user statistics-based model and then ensemble learning model. Which were designed in a way to help classifying Twitter users as fake news spreader or not with highest reliability. User statistical model used 17 features, on the basis of which it categorized a Twitter user as malicious. New dataset based on predictions of machine learning models was constructed. And then Three techniques of simple mean, logistic regression and random forest in combination with ensemble model is applied. Logistic regression combined in ensemble model gave best training and testing results, achieving an accuracy of 72%.

Generating Test Cases of Stateflow Model Using Extended RRT Method Based on Test Goal (테스트 목표 기반의 향상된 RRT 확장 기법을 이용한 Stateflow 모델 테스트 케이스 생성)

  • Park, Hyeon Sang;Choi, Kyung Hee;Chung, Ki Hyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.765-778
    • /
    • 2013
  • This paper proposes a test case generation method for Stateflow model using the extended RRT method. The RRT method which has been popularly used for planning paths for complex systems also shows a good performance for test case generation. However, it does not consider the test coverage which is important for test case generation. The proposed extension method hires the concept of test goal achievement to increase test coverage and drives RRT extension in the direction that increases the goal achievement. Considering the concept, a RRT distance metric, random node generation method and modified RRT extension algorithm are proposed. The effectiveness of proposed algorithm is compared with that of the typical RRT algorithm through the experiment using the practical automotive ECUs.

Finite Element Based Multi-Scale Ductile Failure Simulation of Full-Scale Pipes with a Circumferential Crack in a Low Carbon Steel (유한요소기반 다중스케일 연성파손모사 기법을 이용한 원주방향 균열이 존재하는 탄소강 실배관의 파손예측 및 검증)

  • Han, Jae-Jun;Bae, Kyung-Dong;Kim, Yun-Jae;Kim, Jong-Hyun;Kim, Nak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.727-734
    • /
    • 2014
  • This paper describes multi-scale based ductile fracture simulation using finite element (FE) damage analysis. The maximum and crack initiation loads of cracked components were predicted using proposed virtual testing method. To apply the local approach criteria for ductile fracture, stress-modified fracture strain model was adopted as the damage criteria with modified calibration technique that only requires tensile and fracture toughness test data. Element-size-dependent critical damage model is also introduced to apply the proposed ductile fracture simulation to large-scale components. The results of the simulation were compared with those of the tests on SA333 Gr. 6 full-scale pipes at $288^{\circ}C$, performed by the Battelle Memorial Institute.

Model-Based Interpretation and Experimental Verification of ECT Signals of Steam Generator Tubes (증기발생기 세관 와전류 탐상신호의 모델링기반 해석 및 실험적 검증)

  • Song, Sung-Jin;Kim, Eui-Lae;Yim, Chang-Jae;Lee, Jin-Ho;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 2004
  • Model-based inversion tools for eddy current signals have been developed by combining neural networks and finite element modeling, for quantitative flaw characterization in steam generator tubes. In the present work, interpretation of experimental eddy current signals was carried out in order to validate the developed inversion tools. A database was constructed using the synthetic flaw signals generated by the finite element model. The hybrid neural networks composed of a PNN classifier and BPNN size estimators were trained using the synthetic signals. Experimental eddy current signals were obtained from axisymmetric artificial flaws. Interpretation of flaw signals was conducted by feeding the experimental signals into the neural networks. The interpretation was excellent, which shows that the developed inversion tools would be applicable to the Interpretation of real eddy current signals.

A Study on Composition Model Design and Testing for EJB Design Pattern Based Bean Class (EJB Design Pattern 기반의 Bean Class 조립에 대한 모델 설계 및 Testing 에 관한 연구)

  • 신재준;이돈양;송영재
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1605-1608
    • /
    • 2003
  • Today, E-Business develop because, Internet diffuse rapidly. Variety function and excellence performance needs for changeable user's requirement. So, EJB comes Component's addition and modify. For Component adds Function, Existing System modifies all of the source code. In EJB Component System, but, modifies simple source code. But, Today's System don't have cleary way that assembly component and design system. This Paper used design pattern for maintain of the component. this paper describes EJB Design Pattern using Abstract Factory Pattern. And EJB Component that used Pattern, decribes advantage and disavantage.

  • PDF

The Cusum of Squares Test for Variance Changes in Infinite Order Autoregressive Models

  • Park, Siyun;Lee, Sangyeol;Jongwoo Jeon
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.3
    • /
    • pp.351-360
    • /
    • 2000
  • This paper considers the problem of testing a variance change in infinite order autoregressive models. A cusum of squares test based on the residuals from an AR(q) model is constructed analogous to Inclan and Tiao (1994)'s test statistic, where q is a sequence of positive integers diverging to $\infty$. It is shown that under regularity conditions the limiting distribution of the test statistic is the sup of a standard Brownian bridge. Simulation results are given to illustrate the performance of the test.

  • PDF

On Information Theoretic Index for Measuring the Stochastic Dependence Among Sets of Variates

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.1
    • /
    • pp.131-146
    • /
    • 1997
  • In this paper the problem of measuring the stochastic dependence among sets fo random variates is considered, and attention is specifically directed to forming a single well-defined measure of the dependence among sets of normal variates. A new information theoretic measure of the dependence called dependence index (DI) is introduced and its several properties are studied. The development of DI is based on the generalization and normalization of the mutual information introduced by Kullback(1968). For data analysis, minimum cross entropy estimator of DI is suggested, and its asymptotic distribution is obtained for testing the existence of the dependence. Monte Carlo simulations demonstrate the performance of the estimator, and show that is is useful not only for evaluation of the dependence, but also for independent model testing.

  • PDF