• 제목/요약/키워드: Model-Based Fault Diagnosis

검색결과 217건 처리시간 0.034초

CNC에 실장한 고장진단 및 원격 서비스 시스템 (CNC Implemented Fault Diagnosis and Remote-Service System)

  • 김선호;김동훈;김도연;박영우;윤원수
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.89-97
    • /
    • 2003
  • The faults diagnosis of machine tool, which is controlled by CNC(Computer Numerical Control) and PLC(Programmable Logic Controller), is generally based on ladder diagram of PLC because sequential controls for CNC and servo motor are mostly processed in PLC. However, when fault is occurred, a searching of logical relationship for fault reasons is required a lot of diagnosis experiences and times because PLC program has step structure. In this paper, FDS(Fault Diagnosis System) is developed and implemented to machine tool with open architecture controller in order to find the reason of fault fast and correctly. The diagnosed reasons for fault are remote serviced on web through developed RSS(Remote Service System). The operationability and usefulness of developed system are evaluated on specially manufactured machine tool with open architecture CNC. The results of this research can be the model of remote monitoring and fault diagnosis system of machine tool with open architecture CNC.

PLC기반 차체조립라인의 안전감시를 위한 진단프로그램 생성에 관한 연구 (Auto-Generation of Diagnosis Program of PLC-based Automobile Body Assembly Line for Safety Monitoring)

  • 박창목
    • 대한안전경영과학회지
    • /
    • 제12권2호
    • /
    • pp.65-73
    • /
    • 2010
  • In an automated industry PLC plays a central role to control the manufacturing system. Therefore, fault free operation of PLC controlled manufacturing system is essential in order to maximize a firm's productivity. On the contrary, distributed nature of manufacturing system and growing complexity of the PLC programs presented a challenging task of designing a rapid fault finding system for an uninterrupted process operation. Hence, designing an intelligent monitoring, and diagnosis system is needed for smooth functioning of the operation process. In this paper, we propose a method to continuously acquire a stream of PLC signal data from the normal operational PLC-based manufacturing system and to generate diagnosis model from the observed PLC signal data. Consequently, the generated diagnosis model is used for distinguish the possible abnormalities of manufacturing system. To verify the proposed method, we provided a suitable case study of an assembly line.

3 계 슬라이딩 모드 관측기 기반 로봇 고장 진단 (Third Order Sliding Mode Observer based Robust Fault Diagnosis for Robot Manipulators)

  • 반 미엔;강희준;서영수
    • 제어로봇시스템학회논문지
    • /
    • 제18권7호
    • /
    • pp.669-672
    • /
    • 2012
  • This paper investigates an algorithm for robust fault diagnosis in robot manipulators. The TOSM (Third Order Sliding Mode observer) provides both theoretically exact observation and unknown fault identification without filtration. The EOI (Equivalent Output Injections) of the TOSM observers can be used as residuals for the problem of fault diagnosis and to identify the unknown faults. The obtained fault information can be used for fault detection, isolation as well as fault accommodation to the self-correcting failure system. The computer simulation results for a PUMA 560 robot are shown to verify the effectiveness of the proposed strategy.

Model-based fault diagnosis methodology using neural network and its application

  • Lee, In-Soo;Kim, Kwang-Tae;Cho, Won-Chul;Kim, Jung-Teak;Kim, Kyung-Youn;Lee, Yoon-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.127.1-127
    • /
    • 2001
  • In this paper we propose an input/output model based fault diagnosis method to detect and isolate single faults in the robot arm control system. The proposed algorithm is functionally composed of three main parts-parameter estimation, fault detection, and isolation, When a change in the system occurs, the errors between the system output and the estimated output cross a predetermined threshold, and once a fault in the system is detected, and in this zone the estimated parameters are transferred to the fault classifier by ART2(adaptive resonance theory 2) neural network for fault isolation. Since ART2 neural network is an unsupervised neural network fault classifier does not require the knowledge of all possible faults to isolate the faults occurred in the system. Simulations are carried out to evaluate the performance of the proposed ...

  • PDF

개방형 컨트롤러를 갖는 공작기계에 적합한 진단 및 신호점검사례 (A Case Study on Diagnosis and Checking for Machine-Tools with an OAC)

  • 김동훈;송준엽;김경돈;김찬봉;김선호;고광식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.292-297
    • /
    • 2004
  • The conventional computerized numerical controller (CNC) of machine tools has been increasingly replaced by a PC-based open architecture CNC (OAC) which is independent of the CNC vendor. The OAC and machine tools with OAC led the convenient environment where it is possible to implement user-defined application programs efficiently within CNC. Tis paper proposes a method of operational fault cause diagnosis which is based on the status of programmable logic controller (PLC) in machine tools with OAC. The operational fault is defined as a disability state occurring during normal operation of machine tools. The faults are occupied by over 70% of all faults and are also unpredictable as most of them occur without any warning. Two diagnosis models, the switching function (SF) and the step switching function (SSF), are propose in order to diagnose the fault cause quickly and exactly. The cause of an occurring fault is logically diagnosed through a fault diagnosis system (FDS) using the diagnosis models. A suitable interface environment between CNC and develope application modules is constructed in order to implement the diagnostic functions in the CNC domain. The diagnosed results were displayed on a CNC monitor for machine operators and provided to a remote site through a web browser. The result of his research could be a model of the fault cause diagnosis and the remote monitoring for machine tools with OAC.

  • PDF

CNC 실장 고장진단 및 원격 서비스 기술 개발 (Development of fault diagnosis and tole-service technology for CNC implementation)

  • 김동훈;김선호;김도연;윤원수;김찬봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.7-10
    • /
    • 2002
  • The diagnosis of faults of machine tool, which is controlled by CNC and PLC, is generally based on ladder diagram of PLC. Because sequential controls for CNC and servo motor are mostly processed in PLC. However, when fault is occurred, a searching for logical relation to fault reasons is required a lot of fault experiences and times, because PLC program has step structure. In this paper, FDS(Fault Diagnosis System) is developed and implemented to machine tool with open architecture controller in order to find the reason of fault lastly and correctly. The diagnosed reasons for fault are tele-serviced on web through developed RSS(Remote Service System). The operationability and usefulness of developed system are evaluated on specially manufactured machine tool with open architecture CNC. The results of this research can be the model of remote monitoring and fault diagnosis system of machine tool with open architecture CNC.

  • PDF

확률기법을 이용한 유도전동기의 고장진단 알고리즘 연구 (Probability theory based fault detection and diagnosis of induction motor system)

  • 김광수;조현철;송창환;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.228-229
    • /
    • 2008
  • This paper presents stochastic methodology based fault diction and diagnosis algorithm for induction motor systems. First, we construct probability distribution model from healthy motors and then probability distribution for faulty motors is recursively calculated by means of the proposed probability estimation. We measure motor current with hall sensors as system state. The estimated probability is compared to the model to generate a residue signal which is utilized for fault detection and diagnosis, that is, where a fault is occurred. We carry out real-time induction motor experiment to evaluate efficiency and reliability of the proposed approach.

  • PDF

온라인 확률분포 추정기법을 이용한 확률모델 기반 유도전동기의 고장진단 시스템 (Stochastic Model based Fault Diagnosis System of Induction Motors using Online Probability Density Estimation)

  • 조현철;김광수;이권순
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1847-1853
    • /
    • 2008
  • This paper presents stochastic methodology based fault detection algorithm for induction motor systems. We measure current of healthy induction motors by means of hall sensor systems and then establish its probability distribution. We propose online probability density estimation which is effective in real-time implementation due to its simplicity and low computational burden. In addition, we accomplish theoretical analysis to demonstrate convergence property of the proposed estimation by using statistical convergence and system stability theory. We apply our fault diagnosis approach to three-phase induction motors and achieve real-time experiment for evaluating its reliability and practicability in industrial fields.

웨이블렛 계수의 분산과 상관도를 이용한 유도전동기의 고장 검출 및 진단 (Fault Detection and Diagnosis for Induction Motors Using Variance, Cross-correlation and Wavelets)

  • ;조상진;정의필
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.726-735
    • /
    • 2009
  • 이 논문에서는 신호 모델에 기반하여 유도전동기의 고장 검출 및 고장 진단을 위한 새로운 시스템을 제안한다. 산업현장에 적용하는 기존의 제품들은 신호가 문턱치를 넘어면 고장을 검출하는 단순한 알고리듬을 가지고 있어 고장의 유형이나 고장을 예측하는데 문제가 있다. 이 논문에서는 이러한 문제들을 해결하기 위한 시스템을 제안한다. 이 시스템은 고장 검출 과정과 고장 진단 과정으로 구성되며, 고장 검출 과정은 기계 신호음들이 웨이블렛 필터뱅크를 통과한 후 웨이블렛 계수들의 분산과 상관도를 분석하여 고장을 검출한다. 고장 진단 과정은 패턴분류기술을 적용하여 고장의 유형을 진단하게 된다. 대표적인 유도전동기 고장 유형들로서는 불평형, 미스얼라이먼트, 그리고 베어링 루스 등이 있으며, 이러한 유형들은 제안하는 시스템에서 분석되고 진단을 받게 된다. 제안하는 시스템에 적용한 결과 상관도를 이용한 방법은 78 %, 분산을 이용한 방법은 95 % 이상의 고장진단율을 보이는 우수한 결과를 나타내었다.

Fault Diagnosis of Variable Speed Refrigeration System Based on Current Information

  • Lee, Dong-Gyu;Jeong, Seok-Kwon;Hua, Li
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권4호
    • /
    • pp.137-144
    • /
    • 2008
  • This study deals with on-line fault detection and diagnosis(FDD) for heat exchangers of a variable speed refrigeration system(VSRS) based on current information. The current residual which is the difference between real detected current from current sensors and estimated current from no fault model was utilized to diagnose faults of the heat exchangers. Comparing to the conventional FDD of constant refrigeration system based on temperature and pressure information, the suggested FDD method shows better robustness to the VSRS which has a feedback control loop. Moreover the suggested method can be expected more precise and faster diagnosis of faults about heat exchangers. Throughout some experiments, the validity of the method was verified.