• 제목/요약/키워드: Model variability

검색결과 952건 처리시간 0.031초

ROMS-NPZD 접합모델을 이용한 한반도 주변해역의 표층 영양염 및 클로로필의 계절변동성 (Application of ROMS-NPZD Coupled Model for Seasonal Variability of Nutrient and Chlorophyll at Surface Layer in the Northwestern Pacific)

  • 이준호;김태훈;문재홍
    • Ocean and Polar Research
    • /
    • 제38권1호
    • /
    • pp.1-19
    • /
    • 2016
  • Recently, there has been a growing interest in physical-biological ocean-modeling systems by communities in the fields of science and business. In this paper, we present preliminary results from a coupled physical-biological model for the Northwestern Pacific marginal seas. The ocean circulation component is an implementation of the Regional Ocean Modeling System (ROMS), and the lower trophic level ecosystem component is a Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) model. The ROMS-NPZD coupled system, with a 25 km resolution, is forced by climatological atmospheric data and predicts the physical variables and concentrations of nitrate, phytoplankton, zooplankton, and detritus. Model results are compared with remote-sensed sea surface temperature and chlorophyll, and with climatological sea surface salinity and nitrate. Our model adequately reproduces the observed spatial distribution and seasonal variability of nitrate and chlorophyll concentrations as well as physical variables, showing a high correlation in the East Sea (ES) and Kuroshio/Oyashio Extension (KOE) region but relatively low correlation in the Yellow Sea (YS) and East China Sea (ECS). Although some deficiencies were found in the biological components, such as the over/underestimation of the intensity of phytoplankton blooms in the ES and KOE/the YS and ECS, our system demonstrates the capability of the model to capture and record dominant seasonal variability in physical-biological processes and this holds out the promise of coming to a better understanding of such processes and making better predictions .

다중 관점 제품계열아키텍처의 가변성 관리 및 일관성 검사를 위한 특성 지향 접근방법 (A Feature-Oriented Approach to Variability Management and Consistency Analysis of Multi-Viewpoint Product Line Architectures)

  • 이관우
    • 정보처리학회논문지D
    • /
    • 제15D권6호
    • /
    • pp.803-814
    • /
    • 2008
  • 제품계열아키텍처는 제품에 따라 선택될 수 있는 가변요소를 포함하고 있는 아키텍처이다. 제품계열아키텍처부터 특정 제품을 위한 유효한 아키텍처를 유도하기 위해서는 제품계열아키텍처 내의 가변요소들을 체계적으로 관리해야 한다. 본 논문에서는 특성모델과 제품계열아키텍처 모델간의 명시적인 대응관계를 통해서 제품계열아키텍처의 가변성을 관리한다. 하지만, 이들 모델 간의 대응관계가 올바르지 않거나, 제품계열 아키텍처의 구성요소들 간에 일관성이 없다면, 제품계열아키텍처의 가변성 관리가 올바르게 이루어지지 않게 된다. 따라서 본 논문에서는 먼저, 제품계열아키텍처를 개념, 프로세스, 배치, 모듈의 네 가지 관점의 모델로 정의하고, 특성 모델과 이들 모델 사이의 대응관계를 정형적으로 정의 한다. 이를 바탕으로 제품계열아키텍처의 올바른 가변성 관리를 위해서, 제품계열아키텍처 모델의 일관성, 다른 관점의 아키텍처 모델간의 일관성, 특성모델과 제품계열아키텍처 모델간의 일관성 검사를 위한 규칙을 정의한다. 이러한 일관성 규칙은 제품계열아키텍처로부터 유효한 제품 아키텍처를 유도하기 위한 이론적 기반을 제공한다.

한의학 변수들의 반복측정시 변동량에 대한 수학적 모형 제안 및 교육에의 적용 가능성 (Proposal of a Mathematical Model for Variations in Repeated Measurement of Korean Medicine Clinical Variables and its Applicability to Education)

  • 정하영;권영규;김창업
    • 동의생리병리학회지
    • /
    • 제36권5호
    • /
    • pp.193-208
    • /
    • 2022
  • In this study, we proposed a mathematical model that can explain the source of the observed variability of repeated measurement data collected in Korean medicine clinical practice, and conducted a pilot analysis to infer the source of these variability based on our model. Mathematical model was constructed by dividing the observed variations into three components: common time-dependent variations, signal shift, and measurement error. To show the applicability of our model in real data, we analyzed 20 repeated measurement data of Korean clinical indicators in graduate students of Pusan National University Graduate School of Korean Medicine. We showed how to infer each source of variations based on our model and also showed the limitation of inference given the acquired the dataset. On the basis of objective recognition of these source of the variability, we hope that quantitative investigations on these sources for each Korean medicine clinical indicator are made in the future, so that they can be used in the clinical and educational areas of Korean medicine.

Effects of spatial variability of earthquake ground motion in cable-stayed bridges

  • Ferreira, Miguel P.;Negrao, Joao H.
    • Structural Engineering and Mechanics
    • /
    • 제23권3호
    • /
    • pp.233-247
    • /
    • 2006
  • Most codes of practice state that for large in-plane structures it is necessary to account for the spatial variability of earthquake ground motion. There are essentially three effects that contribute for this variation: (i) wave passage effect, due to finite propagation velocity; (ii) incoherence effect, due to differences in superposition of waves; and (iii) the local site amplification due to spatial variation in geological conditions. This paper discusses the procedures to be undertaken in the time domain analysis of a cable-stayed bridge under spatial variability of earthquake ground motion. The artificial synthesis of correlated displacements series that simulate the earthquake load is discussed first. Next, it is described the 3D model of the International Guadiana Bridge used for running tests with seismic analysis. A comparison of the effects produced by seismic waves with different apparent propagation velocities and different geological conditions is undertaken. The results in this study show that the differences between the analysis with and without spatial variability of earthquake ground motion can be important for some displacements and internal forces, especially those influenced by symmetric modes.

3-D Dynamic groundwater-river interaction modeling incorporating climate variability and future water demand

  • Hong, Yoon-Seok Timothy;Thomas, Joseph
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.67-74
    • /
    • 2008
  • The regional-scale transient groundwater-river interaction model is developed to gain a better understanding of the regional-scale relationships and interactions between groundwater and river system and quantify the residual river flow after groundwater abstraction from the aquifers with climate variability in the Waimea Plains, New Zealand. The effect of groundwater abstraction and climate variability on river flows is evaluated by calculating river flows at the downstream area for three different drought years (a 1 in 10 drought year, 1 in 20 drought year, and 1 in 24 drought year) and an average year with metered water abstraction data. The effect of future water demand (50 year projection) on river flows is also evaluated. A significant increase in the occurrence of zero flow, or very low flow of 100 L/sec at the downstream area is predicted due to large groundwater abstraction increase with climate variability. Modeling results shows the necessity of establishing dynamic cutback scenarios of water usage to users over the period of drought conditions considering different climate variability from current allocation limit to reduce the occurrence of low flow conditions at the downstream area.

  • PDF

Current Status of the KMTNet Active Nuclei Variability Survey (KANVaS)

  • Kim, Joonho;Karouzos, Marios;Im, Myungshin
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.54.1-54.1
    • /
    • 2016
  • Multi-wavelength variability is a staple of active galactic nuclei (AGN). Optical variability probes the nature of the central engine of AGN at smaller linear scales than conventional imaging and spectroscopic techniques. Previous studies have shown that optical variability is more prevalent at longer timescales and at shorter wavelengths. Intra-night variability can be explained through the damped random walk model but small samples and inhomogeneous data have made constraining this model hard. To understand the properties and physical mechanism of intra-night optical variability, we are performing the KMTNet Active Nuclei Variability Survey (KANVaS). Using KMTNet, we aim to study the intra-night variability of ~1000 AGN at a magnitude depth of ~19mag in R band over a total area of ${\sim}24deg^2$ on the sky. Test data in the COSMOS, XMM-LSS, and S82-2 fields was obtained over 4, 6, and 8 nights respectively during 2015, in B, V, R, and I bands. Each night was composed of 5-13 epoch with ~30 min cadence and 80-120 sec exposure times. As a pilot study, we analyzed data in the COSMOS field where we reach a magnitude depth of ~19.5 in R band (at S/N~100) with seeing varying between 1.5-2.0 arcsec. We used the Chandra-COSMOS catalog to identify 166 AGNs among 549 AGNs at B<23. We performed differential photometry between the selected AGN and nearby stars, achieving photometric uncertainty ~0.01mag. We employ various standard time-series analysis tools to identify variable AGN, including the chi-square test. Preliminarily results indicate that intra-night variability is found for ~17%, 17%, 8% and 7% of all X-ray selected AGN in the B, V, R, and I band, respectively. The majority of the identified variable AGN are classified as Type 1 AGN, with only a handful of Type 2 AGN showing evidence for variability. The work done so far confirms there are more variable AGN at shorter wavelengths and that intra-night variability most likely originates in the accretion disk of these objects. We will briefly discuss the quality of the data, challenges we encountered, solutions we employed for this work, and our updated future plans.

  • PDF

Variability of thermal properties for a thermoelastic loaded nanobeam excited by harmonically varying heat

  • Abouelregal, A.E.;Zenkour, A.M.
    • Smart Structures and Systems
    • /
    • 제20권4호
    • /
    • pp.451-460
    • /
    • 2017
  • This work produces a new model of nonlocal thermoelastic nanobeams of temperature-dependent physical properties. A nanobeam is excited by harmonically varying heat and subjected to an exponential decaying time varying load. The analytical solution is obtained by means of Laplace transform method in time domain. Inversions of transformed solutions have been preceded by using calculus of residues. Effects of nonlocal parameter, variability thermal conductivity, varying load and angular frequency of thermal vibration on studied fields of nanobeam are investigated and discussed.

A Role of Bio-production Robots in Precision Farming Model of Japan

  • Shibusawa S.
    • Agricultural and Biosystems Engineering
    • /
    • 제5권1호
    • /
    • pp.1-4
    • /
    • 2004
  • Community-based precision farming is a new concept of agricultural systems, which leads to organize groups of wise farmers and technology platforms in Japan. The wisdom farmers create a rational farming system to manage hierarchical variability: variability in farmers' community as well as variability of within-field and between-field. The technology platform develops and provides three key-technologies: mapping technology, variable-rate technology, and decision support systems available for rural constraints. Advancement of bio-production robots leads precision farming to the next level, where two technological innovations: how to produce and manage information-oriented fields and information-added products, can be attained.

  • PDF

Heart Rate Variability 분석 시스템의 설계 및 구현 (Design and Implementation of Heart Rate Variability analysis system)

  • 길정수;권호열;강두식;이수랑
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.403-406
    • /
    • 2002
  • Autonomic nervous system keep the balance of internal environments against internal and external environment changes which affect the presence. These works play an important role of keeping our health as balancing homeostasis. But the abnormality of these abilities makes our presence feeble. To obtain these information of body, this paper will propose system-measure model which decides whether one is health or not, studying Heart Rate Variability.

  • PDF

압반사 제어모델을 이용한 심혈관시스템 모델링 및 시뮬레이션 (Modeling and Simulation of the Cardiovascular System Using Baroreflex Control Model)

  • 최병철;전계록
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2004년도 춘계학술대회 논문집
    • /
    • pp.109-117
    • /
    • 2004
  • In this paper, we consider the aortic sinus baroreceptor, which is the most representative baroreceptor sensing the variance of pressure in the cardiovascular system, and propose heart activity control model to observe the effect of delay time in heart period and stroke volume under the regulation of baroreflex in the aortic sinus. The proposed heart activity baroreflex regulation model contains electric circuit sub-model. We constituted the time delay sub-model to observe sensitivity of heart activity baroreflex regulation model by using the variable value to represent the control signal transmission time from the output of baroreflex regulation model to efferent nerve through central nervous system. The simulation object of this model is to observe variability of the cardiovascular system by variable value in time delay sub-model. As simulation results, we observe three patterns of the cardiovascular system variability by the time delay, First, if the time delay over 2.5 second, aortic pressure and stroke volume and heart rate is observed nonperiodically and observed. Finally, if time delay under 0.1 second, then heart rate and aortic pressure-heart rate trajectory is maintained in stable state.

  • PDF