• Title/Summary/Keyword: Model uncertainties

Search Result 1,285, Processing Time 0.035 seconds

Identification and Robust Control of a Flexible Manipulator (유연한 매니플레이터의 시스템 동정과 강건제어)

  • 송세환;박창용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.227-277
    • /
    • 2000
  • This paper presents an application of Mixed-Sensitivity H$_{\infty}$ control of a flexible manipulator. Firstly the detail model transfer function is derived from system identification. The objective is to position the free end of the beam with model including uncertainties and disturbance. we derive multiplicative uncertainties based on frequency response from difference between detail model and reduced model for designing controller. Finally we compare simulation results with experimental results.

  • PDF

Evaluation of reactor pulse experiments

  • I. Svajger;D. Calic;A. Pungercic;A. Trkov;L. Snoj
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1165-1203
    • /
    • 2024
  • In the paper we validate theoretical models of the pulse against experimental data from the Jozef Stefan Institute TRIGA Mark II research reactor. Data from all pulse experiments since 1991 have been collected, analysed and are publicly available. This paper summarizes the validation study, which is focused on the comparison between experimental values, theoretical predictions (Fuchs-Hansen and Nordheim-Fuchs models) and calculation using computational program Improved Pulse Model. The results show that the theoretical models predicts higher maximum power but lower total released energy, full width at half maximum and the time when the maximum power is reached is shorter, compared to Improved Pulse Model. We evaluate the uncertainties in pulse physical parameters (maximum power, total released energy and full width at half maximum) due to uncertainties in reactor physical parameters (inserted reactivity, delayed neutron fraction, prompt neutron lifetime and effective temperature reactivity coefficient of fuel). It is found that taking into account overestimated correlation of reactor physical parameters does not significantly affect the estimated uncertainties of pulse physical parameters. The relative uncertainties of pulse physical parameters decrease with increasing inserted reactivity. If all reactor physical parameters feature an uncorrelated uncertainty of 10 % the estimated total uncertainty in peak pulse power at 3 $ inserted reactivity is 59 %, where significant contributions come from uncertainties in prompt neutron lifetime and effective temperature reactivity coefficient of fuel. In addition we analyse contribution of two physical mechanisms (Doppler broadening of resonances and neutron spectrum shift) that contribute to the temperature reactivity coefficient of fuel. The Doppler effect contributes around 30 %-15 % while the rest is due to the thermal spectrum hardening for a temperature range between 300 K and 800 K.

Feedback control of intelligent structures with uncertainties and its robustness analysis

  • Cao, Zongjie;Wen, Bangchun;Kuang, Zhenbang
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.327-340
    • /
    • 2003
  • Variations in system parameters due to uncertainties of parameters may result in system performance deterioration and create system internal stability problems. Uncertainties in structural modeling of structures are often considered to ensure that the control system is robust with respect to response errors. So the uncertain concept plays an important role in the analysis and design of the engineering structures. In this paper, the active control of the intelligent structures with the uncertainties is studied and a new method for analyzing the robustness of systems with the uncertainties is presented. Firstly, the system with uncertain parameters is considered as the perturbation of the system with deterministic parameters. Secondly, the feedback control law is designed on the basis of deterministic system. Thirdly, perturbation analysis and robustness analysis of intelligent structures with uncertainties are discussed when the feedback control law is applied to the original system and perturbed system. Combining the convex model of uncertainties with the finite element method, the analysis theory of the robustness of intelligent structures with the uncertainties can be developed. The description and computation of the robustness of intelligent structures with uncertain parameters is obtained. Finally, a numerical example of the application of the present method is given to show the validity of the method.

Uncertainty analyses of spent nuclear fuel decay heat calculations using SCALE modules

  • Shama, Ahmed;Rochman, Dimitri;Pudollek, Susanne;Caruso, Stefano;Pautz, Andreas
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2816-2829
    • /
    • 2021
  • Decay heat residuals of spent nuclear fuel (SNF), i.e., the differences between calculations and measurements, were obtained previously for various spent fuel assemblies (SFA) using the Polaris module of the SCALE code system. In this paper, we compare decay heat residuals to their uncertainties, focusing on four PWRs and four BWRs. Uncertainties in nuclear data and model inputs are propagated stochastically through calculations using the SCALE/Sampler super-sequence. Total uncertainties could not explain the residuals of two SFAs measured at GE-Morris. The combined z-scores for all SFAs measured at the Clab facility could explain the resulting deviations. Nuclear-data-related uncertainties contribute more in the high burnup SFAs. Design and operational uncertainties tend to contribute more to the total uncertainties. Assembly burnup is a relevant variable as it correlates significantly with the SNF decay heat. Additionally, burnup uncertainty is a major contributor to decay heat uncertainty, and assumptions relating to these uncertainties are crucial. Propagation of nuclear data and design and operational uncertainties shows that the analyzed assemblies respond similarly with high correlation. The calculated decay heats are highly correlated in the PWRs and BWRs, whereas lower correlations were observed between decay heats of SFAs that differ in their burnups.

Comparing fuzzy type-1 and -2 in semi-active control with TMD considering uncertainties

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.155-171
    • /
    • 2019
  • In this study, Semi-active Tuned Mass Dampers (STMDs) are employed in order to cover the prevailing uncertainties and promote the efficiency of the Tuned Mass Dampers (TMDs) to mitigate undesirable structural vibrations. The damping ratio is determined using type-1 and type-2 Fuzzy Logic Controllers (T1 and T2 FLC) based on the response of the structure. In order to increase the efficiency of the FLC, the output membership functions are optimized using genetic algorithm. The results show that the proposed FLC can reduce the sensitivity of STMD to excitation records. The obtained results indicate the best operation for T1 FLC among the other control systems when the uncertainties are neglected. According to the irrefutable uncertainties, three supplies for these uncertainties such as time delay, sensors measurement noises and the differences between real and software model, are investigated. Considering these uncertainties, the efficiencies of T1 FLC, ground-hook velocity-based, displacement-based and TMD reduce significantly. The reduction rates for these algorithms are 12.66%, 26.43%, 20.98% and 21.77%, respectively. However, due to nonlinear behavior and considering a range of uncertainties in membership functions, T2 FLC with 7.2% reduction has robust performance against uncertainties compared to other controlling systems. Therefore, it can be used in actual applications more confidently.

The effects of uncertainties in structural analysis

  • Pellissetti, M.F.;SchueIler, G.I.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.3
    • /
    • pp.311-330
    • /
    • 2007
  • Model-based predictions of structural behavior are negatively affected by uncertainties of various type and in various stages of the structural analysis. The present paper focusses on dynamic analysis and addresses the effects of uncertainties concerning material and geometric parameters, mainly in the context of modal analysis of large-scale structures. Given the large number of uncertain parameters arising in this case, highly scalable simulation-based methods are adopted, which can deal with possibly thousands of uncertain parameters. In order to solve the reliability problem, i.e., the estimation of very small exceedance probabilities, an advanced simulation method called Line Sampling is used. In combination with an efficient algorithm for the estimation of the most important uncertain parameters, the method provides good estimates of the failure probability and enables one to quantify the error in the estimate. Another aspect here considered is the uncertainty quantification for closely-spaced eigenfrequencies. The solution here adopted represents each eigenfrequency as a weighted superposition of the full set of eigenfrequencies. In a case study performed with the FE model of a satellite it is shown that the effects of uncertain parameters can be very different in magnitude, depending on the considered response quantity. In particular, the uncertainty in the quantities of interest (eigenfrequencies) turns out to be mainly caused by very few of the uncertain parameters, which results in sharp estimates of the failure probabilities at low computational cost.

Krein Space Robust Extended Kalman filter Design for Pose Estimation of Mobile Robots with Wheelbase Uncertainties (휠베이스에 불확실성을 갖는 이동로봇의 자세 추정을 위한 크라인 스페이스 강인 확장 칼만 필터의 설계)

  • Jin, Seung-Hee;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.433-436
    • /
    • 2003
  • The estimation of the position and the orientation for the mobile robot constitutes an important problem in mobile robot navigation. Although the odometry can be used to describe the motions of the mobile robots, there inherently exist the gaps between the real robots and the mathematical model, which may be caused by a number of error sources contaminating the encoder outputs. Hence, applying the standard extended Kalman filter for the nominal model is not supposed to give the satisfactory performance. As a solution to this problem, a new robust extended Kalman filter is proposed based on the Krein space approach. We consider the uncertain discrete time nonlinear model of the mobile robot that contains the uncertainties represented as sum quadratic constraints. The proposed robust filter has the merit of being constructed by the same recursive structure as the standard extended Kalman filter and can, therefore, be easily designed to effectively account for the uncertainties. The simulations will be given to verify the robustness against the parameter variation as veil as the reliable performance of the proposed robust filter.

  • PDF

Fuzzy Sliding Mode Control for Uncertain Nonlinear Systems Using Fuzzy Models

  • Seo, Sam-Jun;Kim, Dong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1262-1266
    • /
    • 2003
  • Fuzzy sliding mode controller for a class of uncertain nonlinear dynamical systems is proposed and analyzed. The controller's construction and its analysis involve sliding modes. The proposed controller consists of two components. Sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum. The results show that both alleviation of chattering and performance are achieved.

  • PDF

A Krein Space Approach for Robust Extended Kalman Filtering on Mobile Robots in the Presence of Uncertainties

  • Jin, Seung-Hee;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1771-1776
    • /
    • 2003
  • In mobile robot navigation, one of the key problems is the pose estimation of the mobile robot. Although the odometry can be used to describe the motions of the mobile robots quite simple and accurately, the validities of the models are limited by a number of error sources contaminating the encoder outputs so that applying the conventional extended Kalman filter to these nominal model does not yield the satisfactory performance. As a remedy for this problem, we consider the uncertain nonlinear kinematic model of the mobile robot that contains the norm bounded uncertainties and also propose a new robust extended Kalman filter based on the Krein space approach. The proposed robust filter has the same recursive structure as the conventional extended Kalman filter and can hence be readily designed to effectively account for the uncertainties. The computer simulations will be given to verify the robustness against the parameter variation as well as the reliable performance of the proposed robust filter.

  • PDF

A Study on the Robust Design Using Kriging Surrogate Models (크리깅 근사모델을 이용한 강건설계에 관한 연구)

  • Lee, Kwon-Hee;Cho, Yong-Chul;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.870-875
    • /
    • 2004
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, the robust design strategy is developed based on the DACE and the global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the system. The robustness is determined by the DACE model to reduce the real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

  • PDF