• Title/Summary/Keyword: Model soil box

Search Result 104, Processing Time 0.024 seconds

An Evaluation of Tree Roots Effect on Soil Reinforcement by Direct Shear Test (일면전단실험에 의한 수목뿌리의 토양보강효과 평가)

  • Cha, Du Song;Oh, Jae-Heun
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.4 s.161
    • /
    • pp.281-286
    • /
    • 2005
  • Trees enhance slope stability against down slope mass movement through the removal of soil water by transpiration and by the mechanical reinforcement of their roots. To assess the magnitude of this reinforcement on natural slope stability, direct shear tests were made on dry sand reinforced with different array types of roots. Pinus koraiensis was used as root specimens. The peak shear resistance at each normal stress level was measured on the rooted and unrooted soil specimens. Increased soil resistance(${\Delta}S$) by roots was calculated using parameters like internal friction angle and cohesion of tested soil and also evaluated the effects of root array in tested soil. As results, we find that shear resistance increased in tested soil shear box as diameters and arrayed numbers of root specimen increased and cross root array in tested soil had a much greater reinforcing effect than other root arrays. Comparison of traditional root-soil model with experiments showed that simulated reinforce strength by the model was different with those obtained by the experiment due to its linearity.

A Study on the Recycling of Coal Ash as Structural Backfill materials (구조물 뒷채움재로서의 석탄회 활용에 관한 연구)

  • 여유현
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.74-79
    • /
    • 2000
  • The purpose of this paper is to recycle coal ash as structural backfill materials from electric power plants. Two million tons of coal ash are produced annually. The laboratory test was executed for the basic compatibility as substitution for structural backfill materials and the optimal mixture ratio(fly ash : bottom ash) was decided. In addition the model test was performed using medium scale earth pressure model with small size earth pressure cells model box data logger and some other apparatuses. Mixed coal ash and excellent backfill materials(coheisonless soil SW) were compared in the view of lateral earth pressure variation depending on wall displacement. The reduction of earth pressure when coal ash was used as a bockfill material was monitored comparing to that of cohesionless soil. the cost and environmental pollutants by treating coal ash can be reduced through developing the recycling technology.

  • PDF

Derivation of Transfer Function Models in each Antecedent Precipitation Index for Real-time Streamflow Forecasting (실시간 유출예측을 위한 선행강우지수별 TF모형의 유도)

  • Nahm, Sun Woo;Park, Sang Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.115-122
    • /
    • 1992
  • Stochastic rainfall-runoff process model which is mainly used in real-time streamflow forecasting is Transfer Function(TF) model that has a simple structure and can be easy to formulate state-space model. However, in order to forecast the streamflow accurately in real-time using the TF model, it is not only necessary to determine accurate structure of the model but also required to reduce forecasting error in early stage. In this study, after introducing 5-day Antecedent Precipitation Index (API5), which represents the initial soil moisture condition of the watershed, by using the threshold concept, the TF models in each API5 are identified by Box-Jenkins method and the results are compared with each other.

  • PDF

The Earth Pressure on the Effect of Surcharge Load at the Narrowly Backfilled Soil (좁은 공간 되메움 지반에서의 상재하 영향에 의한 토압)

  • 문창열;이종규
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.165-180
    • /
    • 1997
  • The structure such as underground external walls of buildings, conduit and box culvert supports the surcharge loads (point, strip and line loads) . The vertical and horizontal stresses in a soil mass depend on the backfill width and wall friction, etc. The investigations described in this paper is designed to identify the magnitude and the distributions of the lateral and vertical pressure which is occurred by the narrowly backfilled soil in an open cut by the surcharge loads. For these purposes, model tests were performed for various width of backfill in a model test box by considering the wall friction using carbon rods. The results of test were compared with the theories of Weissenbach and VS Army Code and also with the results of the numerical analysis using finite difference method which introduces Mohr-Coulomb failure hypothesis.

  • PDF

Study on the Exposure Assessment Methodology for Outdoor Air Inhalation Pathways in Site-specific Risk Assessment and Its Application in a TPH-contaminated Site (유류오염부지 시범적용을 통한 실외공기 오염물질흡입 노출경로에 대한 부지특이적 노출량 산정 방안에 대한 고찰)

  • Kim, Sang Hyun;Chung, Hyeonyong;Jeong, Buyun;Noh, Hoe-Jung;Kim, Hyun-Koo;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.65-73
    • /
    • 2020
  • Exposure assessment methodology for outdoor air inhalation pathways (i.e., inhalation of volatile compounds and fugitive dust in outdoor air) was investigated. Default values of several parameters currently used in Korea (e.g., Q/C; inverse value of concentration per unit flux, and frs; soil fraction in PM10) may not be suitable and lack site-specificity, as they have been adopted from the risk assessment guidance of the United States or the Netherlands. Such limitation can be addressed to a certain degree by incorporating the volatilization factor (VF) and the particulate emission factor (PEF) with Box model. This approach was applied to an exposure assessment of a site contaminated with petroleum hydrocarbons in Korea. The result indicated that the suggested methodology led to more accurate site-specific exposure assessment for outdoor inhalation pathways. Further work to establish methodology to determine site-specific Q/C values in Korea needs to be done to secure the reliability of the exposure assessment for outdoor air inhalation pathways.

Wall Displacement of Geosynthetic Reinforced Soil Walls with Different Surcharge Loads - Model Test (상재하중 변화에 따른 토목섬유 보강토옹벽의 벽체변위)

  • Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.41-47
    • /
    • 2008
  • This paper describes the results of model experiments in the laboratory, which were conducted to assess the behavior characteristics of geosynthetic reinforced soil walls according to different surcharge loads and reinforcement types. The model walls were built in the box having dimension, 100 cm tall, 140 cm long, and 100cm wide. Three types of geosynthetics, geonet, geogrid A and geogrid B, are used as the reinforcements. Decomposed granite soil (SM) was used as a backfill material. Seven model walls are constructed and tested. After the construction of the model wall, the LVDTs are installed to obtain the displacements of the wall face. As the results of the model tests, the maximum horizontal displacements of the model walls occurred due to uniform surcharge pressure were measured at the 0.7H from the bottom of the wall. The more the reinforcement strength increases, the more the wall displacements decrease, and also the reduction ratio of the wall displacement decrease with increasing the surcharge pressure.

  • PDF

New horizon of earth reinforcement technique - current and future -

  • Otani, Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.514-527
    • /
    • 2007
  • Earth reinforcement techniques are used worldwide and offer proven solutions to a wide range of geotechnical engineering problems. Here in this paper, recent developments of three major reinforced soil retaining wall methods in Japan were introduced in order to show how the current situation of this technique in Japan is. And the statistical data for the volume of the use was also shown, such as the total volume of the use, the scales of the structures, layout of the earth reinforcement, fill materials, and foundation conditions. Some of the case histories were also introduced with photographs and figures. And then, as one of recent research activity by the author, the study on the application of X-ray CT for the problem of earth reinforcement method combined with other method such as piling and soil improvement was introduced. In this study, a series of model test for several reinforced ground with geogrids was conducted using a newly developed test apparatus. Then, the behavior in the soil box was scanned after settlement using X-ray CT scanner. Based on these test results, the reinforcing effect by the geogrids and the soil arching effect over the pile heads was discussed precisely and those are done in 3-D with nondestructive condition. Finally, the effectiveness of the use of X-ray CT scanner in geotechnical engineering was promised.

  • PDF

Model Experiment for Evaluating Internal Erosion Resistance Around Embankment Box-culvert Using Biopolymer T reated Soil (바이오폴리머 혼합토를 활용한 제방 통문 주위 내부침식 저항성 평가를 위한 모형실험)

  • Kim, Minjin;Moon, Junho;Kim, Chanhee;Kim, Younguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.65-70
    • /
    • 2021
  • River-side Embankment collapse involves various causes. The embankment collapse due to internal erosion around embedded structures reaches up to more than 10% in Korea. Many studies are being attempted to prevent from the collapse of the embankment rooted from overtopping and instability as well as internal erosion. One of them is the study on the application of biopolymers. The application of biopolymers to soils are divided into enhancing strength, vegetation and erosion resistance. This study investigated the effect of biopolymer treated soil on erosion resistance. The main goal of the study is to obtain basic data for real-scale experiments to verify the effectiveness of biopolymer treated soil embankment including a review of the collapse pattern in the model embankment with various test conditions. The optimized experimental conditions were selected by examining the erosion patterns according to each induction path with three compaction degree of the model embankment. As a result of the experiment, the internal erosion rate in the embankment to which the biopolymer treated soil was applied is greatly reduced, and it could be concluded that it might be applied to the actual embankment. However, in this study, the conclusion was drawn only within the scaled-down model embankment. In order to practically apply the biopolymer treated soil to the embankment, the study considering the scale effect would be needed.

Application of sand compaction pile method of row replacement ratio as foundation of the dyke (호안기초로서 저치환율 모래다짐말뚝 공법의 적용)

  • Jin, Sung-Ki;Kim, Bum-Hyung;Kim, Jong-Seok;Im, Jong-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.472-485
    • /
    • 2008
  • In this study, sand compaction pile method was adopted to improve the soft ground under the permanent dyke, namely west sea dyke of Incheon New Port. The row replacement ratio 30% was applied to consider the ground condition, environmental side and the construction cost of the site. The stability and displacement analysis was carried out by respectively SLOPE/W and PLAXIS 2D program. Based on this analysis, it is found that the safety factor and displacement is within an allowable criteria. The model experiment was carried out using the acryl soil box with $400(H){\times}1200(L){\times}250(W)mm$ to show the displacement of the dyke and behavior of soft ground. Based on this experiment results, it is found that the settlement does not occur from 1 and 2 loading phases and horizontal displacement of 0.0075% occurs from 2 phases. It is also found that the differential settlement occurs 0.05mm corresponding respectively 0.02% and 0.03% of the dyke height(15cm).

  • PDF

The Study on Assessment of Protective Capacity of the Reinforced Concrete Box-type Artillery Positions (철근콘크리트조 박스형 포상의 방호성능 평가)

  • Baek, Jonghyuk;Kim, Suk Bong;Son, Kiyoung;Park, Young Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.275-281
    • /
    • 2014
  • Although self-propelled artilleries are mobile equipment, they need their own covered-positions for survival against preemptive strikes. The most important military requirement is enough protective capacity against blast pressure caused by explosion. This paper aims to assess the protective capacity of the newly-placed concrete box-type artillery positions using accurate structural geometric models as well as soil-structure interaction analysis. The commercial program is used to model the structural geometry of the positions. In order to describe the correct wave propagation in the backfill along with soil-structure interaction, used parameters in shock equation of state are selected based on the related studies as well as theories and then their final results are verified with the ones calculated with empirical equations in the US Unified Facility Criteria. In sum, it could be concluded that the protective capacity of the newly-built positions satisfies the protective structural requirement.