CNN은 객체의 특징을 추출하는 과정에서 많은 계산량과 메모리를 요구하고 있다. 또한 사용자에 의해 네트워크가 고정되어 학습되기 때문에 학습 도중에 네트워크의 형태를 수정할 수 없다는 것과 컴퓨팅 자원이 부족한 모바일 디바이스에서 사용하기 어렵다는 단점이 있다. 이러한 문제점들을 해결하기 위해, 우리는 사전 학습된 가중치 파일에 가지치기 방법을 적용하여 연산량과 메모리 요구량을 줄이고자 한다. 이 방법은 3단계로 이루어져 있다. 먼저, 기존에 학습된 네트워크 파일의 모든 가중치를 각 계층 별로 불러온다. 두 번째로, 각 계층의 가중치에 절댓값을 취한 후 평균을 구한다. 평균을 임계값으로 설정한 뒤, 임계 값 이하 가중치를 제거한다. 마지막으로 가지치기 방법을 적용한 네트워크 파일을 재학습한다. 우리는 LeNet-5와 AlexNet을 대상으로 실험을 하였으며, LeNet-5에서 31x, AlexNet에서 12x의 압축률을 달성 하였다
실시간 처리 및 프라이버시 강화를 위해 인공지능 모델을 엣지에서 동작시킬 수 있는 온디바이스 AI 기술이 각광받고 있다. 지능형 사물인터넷 기술이 다양한 산업에 적용되면서 온디바이스 AI 기술을 활용한 서비스가 크게 증가하고 있다. 그러나 일반적인 딥러닝 모델은 추론 및 학습을 위해 많은 연산 자원을 요구하고 있다. 따라서 엣지에 적용되는 경량 기기에서 딥러닝 모델을 동작시키기 위해 양자화나 가지치기와 같은 다양한 경량화 기법들이 적용되어야 한다. 본 논문에서는 다양한 경량화 기법 중 가지치기 기술을 중심으로 엣지 컴퓨팅 기기에서 딥러닝 모델을 경량화하여 적용할 수 있는 방안을 분석한다. 특히, 동적 및 정적 가지치기 기법을 적용하여 경량화된 비전 모델의 추론 속도, 정확도 그리고 메모리 사용량을 시험한다. 논문에서 분석된 내용은 실시간 특성이 중요한 지능형 영상 관제 시스템이나 자율 이동체의 영상 보안 시스템에 적용될 수 있다. 또한 사물인터넷 기술이 적용되는 다양한 서비스와 산업에 더욱 효과적으로 활용될 수 있을 것으로 기대된다.
최근 서비스 지향 아키텍처 (Service Oriented Architecture SOA) 기반의 애플리케이션 개발에 맞게 비즈니스 프로세스의 유연성을 확보하고 재사용을 증진시키기 위하여 비즈니스 프로세스 패밀리 모델 (Business Process Family Model: BPFM)이 제시되었다. BPFM은 소프트웨어 프로덕트 라인 방법의 가변성 분석 기법을 사용하여 비즈니스 프로세스 군 (family)에서 나타날 수 있는 가변성을 분석하여 이를 명시적으로 표현하고 있는 모델이다. BPFM으로부터 여러 개의 비즈니스 프로세스 모델 (Business Process Model: BPM)을 개발하기 위해서는 가변성 결정 및 가지치기(Decision and Pruning) 과정을 거쳐야 한다. 이 때 가변성 사이에는 서로 협력적 또는 배타적인 관계를 가질 수 있고 이는 가변성 결정과 가지치기에 영향을 미치게 되는데, 현재 제시된 BPFM에는 이러한 바인딩 정보에 대해서 고려하지 않고 있다. 본 논문에서는 비즈니스 프로세스 군에서 식별될 수 있는 가변성들 사이의 의존관계 유형을 분석하고 이러한 가변성 정보를 독립된 의존관계 분석모델로 표현하는 방법을 제시한다. 또한 추출된 모델을 기반으로 하나의 가변성 결정으로부터 영향을 받는 다른 가변성들을 추적하여 선결정 처리 할 수 있는 방법을 제공한다. 본 방법을 이용함으로써 가변성 결정회수를 줄일 수 있고, 또한 잘못된 가변성 결정으로 인한 BPM의 기능 불일치를 해소할 수 있음을 사례연구를 통해 보인다.
This paper proposes the simulator synthesis scheme which is based on the exploration of the total design space in attributed AND-OR graph. Attributed AND-OR graph is a systematic design space representation formalism which enables to represent all the design space by decomposition rule and specialization rule. In addition, attributes attached to the design entity provides flexible modeling. Based on this design space representation scheme, a pruning algorithm which can transform the total design space into sub-design space that satisfies the user requirements is given. We have shown the effectiveness of our framework by (ⅰ) constructing the design space of superscalar processor in attributed AND-OR graph (ⅱ) pruning it to obtain the ARM9 processor architecture. (ⅲ) modeling the components of the architecture and (ⅳ) simulating the ARM9 model.
The World Health Organization provides guidelines for managing the particulate matter (PM) level because a higher PM level represents a threat to human health. To manage the PM level, a procedure for measuring the PM value is first needed. We use a PM sensor that collects the PM level by laser-based light scattering (LLS) method because it is more cost effective than a beta attenuation monitor-based sensor or tapered element oscillating microbalance-based sensor. However, an LLS-based sensor has a higher probability of malfunctioning than the higher cost sensors. In this paper, we regard the overall malfunctioning, including strange value collection or missing collection data as anomalies, and we aim to detect anomalies for the maintenance of PM measuring sensors. We propose a novel architecture for solving the above aim that we call the hypothesis pruning generative adversarial network (HP-GAN). Through comparative experiments, we achieve AUROC and AUPRC values of 0.948 and 0.967, respectively, in the detection of anomalies in LLS-based PM measuring sensors. We conclude that our HP-GAN is a cutting-edge model for anomaly detection.
딥 러닝 모델 사용에 있어서, 일반적인 사용자가 이용할 수 있는 하드웨어 리소스는 제한적이기 때문에 기존 모델을 경량화 할 수 있는 프루닝 방법을 통해 제한적인 리소스를 효과적으로 활용할 수 있도록 한다. 그 방법으로, 여러 딥 러닝 모델들 중 비교적 파라미터 수가 많은 것으로 알려진 GAN 아키텍처에 네트워크 프루닝을 적용함으로써 비교적 무거운 모델을 적은 파라미터를 통해 학습할 수 있는 방법을 제시한다. 또한, 본 논문을 통해 기존의 SRGAN 논문에서 가장 효과적인 결과로 제시했던 16 개의 residual block 의 개수를 실제로 줄여 봄으로써 기존 논문에서 제시했던 결과와의 차이에 대해 서술한다.
Dorjsembe, Uyanga;Lee, Ju Hong;Choi, Bumghi;Song, Jae Won
한국정보처리학회:학술대회논문집
/
한국정보처리학회 2021년도 춘계학술발표대회
/
pp.373-376
/
2021
Deep neural networks have achieved almost human-level results in various tasks and have become popular in the broad artificial intelligence domains. Uncertainty estimation is an on-demand task caused by the black-box point estimation behavior of deep learning. The deep ensemble provides increased accuracy and estimated uncertainty; however, linearly increasing the size makes the deep ensemble unfeasible for memory-intensive tasks. To address this problem, we used model pruning and quantization with a deep ensemble and analyzed the effect in the context of uncertainty metrics. We empirically showed that the ensemble members' disagreement increases with pruning, making models sparser by zeroing irrelevant parameters. Increased disagreement implies increased uncertainty, which helps in making more robust predictions. Accordingly, an energy-efficient compressed deep ensemble is appropriate for memory-intensive and uncertainty-aware tasks.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권12호
/
pp.3904-3922
/
2022
As a research hotspot, pedestrian detection has a wide range of applications in the field of computer vision in recent years. However, current pedestrian detection methods have problems such as insufficient detection accuracy and large models that are not suitable for large-scale deployment. In view of these problems mentioned above, a lightweight pedestrian detection and early warning method using a new model called you only look once (Yolov5) is proposed in this paper, which utilizing advantages of Yolov5s model to achieve accurate and fast pedestrian recognition. In addition, this paper also optimizes the loss function of the batch normalization (BN) layer. After sparsification, pruning and fine-tuning, got a lot of optimization, the size of the model on the edge of the computing power is lower equipment can be deployed. Finally, from the experimental data presented in this paper, under the training of the road pedestrian dataset that we collected and processed independently, the Yolov5s model has certain advantages in terms of precision and other indicators compared with traditional single shot multiBox detector (SSD) model and fast region-convolutional neural network (Fast R-CNN) model. After pruning and lightweight, the size of training model is greatly reduced without a significant reduction in accuracy, and the final precision reaches 87%, while the model size is reduced to 7,723 KB.
Fuzzy modelling has the approximation property far the given input-output relationship. Especially, Takagi-Sugeno fuzzy models are widely used because they show very good performance in the nonlinear function approximation problem. But generally there is not the systematic method incorporating the human expert's knowledge or experience in fuzzy rules and it is not easy to End the membership function of fuzzy rule to minimize the output error as well. The ANFIS (Adaptive Network-based Fuzzy Inference Systems) is one of the neural network based fuzzy modelling methods that can be used with various type of fuzzy rules. But in this model, it is the problem to End the optimum number of fuzzy rules in fuzzy model. In this paper, a new fuzzy modelling method based on the ANFIS and pruning techniques with the measure named impact factor is proposed and the performance of proposed method is evaluated with several simulation results.
CNN 기반 인공신경망은 영상 분류, 객체 인식, 화질 개선 등 다양한 분야에서 뛰어난 성능을 보이고 있다. 그러나, 많은 응용에서 딥러닝(Deep Learning) 모델의 복잡도 및 연산량이 방대해짐에 따라 IoT 기기 및 모바일 환경에 적용하기에는 제한이 따른다. 따라서 기존 딥러닝 모델의 성능을 유지하면서 모델 크기를 줄이는 인공신경망 압축 기법이 연구되고 있다. 본 논문에서는 인공신경망 압축기법을 통하여 원본 CNN 모델을 압축하고, 압축된 모델을 임베디드 시스템 환경에서 그 성능을 검증한다. 성능 검증을 위해 인공지능 지원 맞춤형 칩인 QCS605를 내장한 임베디드 보드에서 카메라로 입력한 영상에 대해서 원 CNN 모델과 압축 CNN 모델의 분류성능과 추론시간을 비교 분석한다. 본 논문에서는 이미지 분류 CNN 모델인 MobileNetV2, ResNet50 및 VGG-16에 가지치기(pruning) 및 행렬분해의 인공신경망 압축 기법을 적용하였고, 실험결과에서 압축된 모델이 원본 모델 분류 성능 대비 2% 미만의 손실에서 모델의 크기를 1.3 ~ 11.2배로 압축했을 뿐만 아니라 보드에서 추론시간과 메모리 소모량을 각각 1.2 ~ 2.1배, 1.2 ~ 3.8배 감소함을 확인했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.