• 제목/요약/키워드: Model predictive controller

검색결과 168건 처리시간 0.034초

A Model Predictive Controller for Nuclear Reactor Power

  • Na Man Gyun;Shin Sun Ho;Kim Whee Cheol
    • Nuclear Engineering and Technology
    • /
    • 제35권5호
    • /
    • pp.399-411
    • /
    • 2003
  • A model predictive control method is applied to design an automatic controller for thermal power control in a reactor core. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, the second optimal control input is not implemented and the procedure to solve the optimization problem is then repeated. The objectives of the proposed model predictive controller are to minimize the difference between the output and the desired output and the variation of the control rod position. The nonlinear PWR plant model (a nonlinear point kinetics equation with six delayed neutron groups and the lumped thermal-hydraulic balance equations) is used to verify the proposed controller of reactor power. And a controller design model used for designing the model predictive controller is obtained by applying a parameter estimation algorithm at an initial stage. From results of numerical simulation to check the controllability of the proposed controller at the $5\%/min$ ramp increase or decrease of a desired load and its $10\%$ step increase or decrease which are design requirements, the performances of this controller are proved to be excellent.

쌍일차 모델을 이용한 폐열 스팀 보일러의 액위 적응 예측 제어 (Adaptive predictive level control of waste heat steam boiler based on bilinear model)

  • 오세천;여영구
    • 제어로봇시스템학회논문지
    • /
    • 제2권4호
    • /
    • pp.344-350
    • /
    • 1996
  • An adaptive predictive level control of waste heat steam boiler was studied by using mathematical models considering the inverse response. The simulation experiments of the model identification were performed by using linear and bilinear models. From the results of simulations it was found that the bilinear model represented the actual dynamic behavior of steam boiler very well. ARMA model was used in the model identification and the adaptive predictive controller. To verify the performance and effectiveness of the adaptive predictive controller used in this study the simulation results of the adaptive predictive level control for waste heat steam boiler based on bilinear model were compared to those of P, PI and PID controller. The results of simulations showed that the adaptive predictive controller provides the fast arrival to setpoint of liquid level.

  • PDF

속도 및 가속도 제한조건을 갖는 모델예측제어기 설계 (Design of Model Predictive Controllers with Velocity and Acceleration Constraints)

  • 박진현;최영규
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.809-817
    • /
    • 2018
  • The model predictive controller performance of the mobile robot is set to an arbitrary value because it is difficult to select an accurate value with respect to the controller parameter. The general model predictive control uses a quadratic cost function to minimize the difference between the reference tracking error and the predicted trajectory error of the actual robot. In this study, we construct a predictive controller by transforming it into a quadratic programming problem considering velocity and acceleration constraints. The control parameters of the predictive controller, which determines the control performance of the mobile robot, are used a simple weighting matrix Q, R without the reference model matrix $A_r$ by applying a quadratic cost function from which the reference tracking error vector is removed. Therefore, we designed the predictive controller 1 and 2 of the mobile robot considering the constraints, and optimized the controller parameters of the predictive controller using a genetic algorithm with excellent optimization capability.

Design and Implementation of an Active Power Filter Using Model Predictive Controller

  • Haeri, Mohammad;Zeinali, Mahdi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1975-1980
    • /
    • 2004
  • A parallel active power filter is designed and implemented to compensate for undesired current harmonics generated by a nonlinear load. The filter works based on PWM strategy and control signal is generated using a model predictive controller. To evaluate the achievements, a PI controller is also designed and implemented. Experimental results indicate about 50% increase in the efficiency over PI controller.

  • PDF

Design of a Nuclear Reactor Controller Using a Model Predictive Control Method

  • Na, Man-Gyun;Jung, Dong-Won;Shin, Sun-Ho;Lee, Sun-Mi;Lee, Yoon-Joon;Jang, Jin-Wook;Lee, Ki-Bog
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2080-2094
    • /
    • 2004
  • A model predictive controller is designed to control thermal power in a nuclear reactor. The basic concept of the model predictive control is to solve an optimization problem for finite future time steps at current time, to implement only the first optimal control input among the solved control inputs, and to repeat the procedure at each subsequent instant. A controller design model used for designing the model predictive controller is estimated every time step by applying a recursive parameter estimation algorithm. A 3-dimensional nuclear reactor analysis code, MASTER that was developed by Korea Atomic Energy Research Institute (KAERI), was used to verify the proposed controller for a nuclear reactor. It was known that the nuclear power controlled by the proposed controller well tracks the desired power level and the desired axial power distribution.

증기 발생기 수위제어를 위한 모델예측제어기 설계 (Design of Model Predictive Controller for Water Level control in the Steam Generator of a nuclear Power Plants)

  • 손덕현;이창구
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권8호
    • /
    • pp.376-383
    • /
    • 2001
  • Factors leading to poor control of the steam generator in a nuclear power plant are nonminimum phase characteristics, unreliable of flow measurements and nonlinear characteristics, which increase more at low power(below 20%) operation. And the study of problems for water level control in the steam generator is that design water level controller only power renge, not entire. This paper introduces a model predictive control(MPC) algorithm for solving poor control factors and quadratic programming(QP) for solving input constraints. Also presents the design method of stable model predictive controller in the entire power range. The simulation results show the efficiency of proposed MPC controller by comparing with PI controller, and effect of the design parameters.

  • PDF

예측제어기법을 이용한 PID 제어기 설계 (The PID Controller for Predictive control Algorithm)

  • 김양환;이정재;이정용;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제11권1호
    • /
    • pp.19-26
    • /
    • 2005
  • This paper is concerned with the design of a predictive PID controller which has similar features to the model-based predictive controller. A PID type control structure is defined, which includes prediction of the outputs and the recalculation of new set points using the future set point data. The optimal values of the PID gains are precalculated using the values of gains calculated from an unconstrained generalized predictive control algorithm. Simulation studies demonstrate the performance of the proposed controller and the results are compared with the conventional PID and fuzzy control algorithms.

DESIGN OF A PWR POWER CONTROLLER USING MODEL PREDICTIVE CONTROL OPTIMIZED BY A GENETIC ALGORITHM

  • Na, Man-Gyun;Hwang, In-Joon
    • Nuclear Engineering and Technology
    • /
    • 제38권1호
    • /
    • pp.81-92
    • /
    • 2006
  • In this study, the core dynamics of a PWR reactor is identified online by a recursive least-squares method. Based on the identified reactor model consisting of the control rod position and the core average coolant temperature, the future average coolant temperature is predicted. A model predictive control method is applied to designing an automatic controller for the thermal power control of PWR reactors. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, this procedure for solving the optimization problem is repeated. The objectives of the proposed model predictive controller are to minimize both the difference between the predicted core coolant temperature and the desired temperature, as well as minimizing the variation of the control rod positions. In addition, the objectives are subject to the maximum and minimum control rod positions as well as the maximum control rod speed. Therefore, a genetic algorithm that is appropriate for the accomplishment of multiple objectives is utilized in order to optimize the model predictive controller. A three-dimensional nuclear reactor analysis code, MASTER that was developed by the Korea Atomic Energy Research Institute (KAERI) , is used to verify the proposed controller for a nuclear reactor. From the results of a numerical simulation that was carried out in order to verify the performance of the proposed controller with a $5\%/min$ ramp increase or decrease of a desired load and a $10\%$ step increase or decrease (which were design requirements), it was found that the nuclear power level controlled by the proposed controller could track the desired power level very well.

유전자 알고리즘에 의해 최적화된 모델예측제어를 이용한 PWR 출력제어기 (A Pressurized Water Reactor Power Controller Using Model Predictive Control Optimized by a Genetic Algorithm)

  • 나만균;황인준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.104-106
    • /
    • 2005
  • In this work, a PWR reactor core dynamics is identified online by a recursive least squares method. Based on this identified reactor model consisting of the control rod position and the core average coolant temperature, the future average coolant temperature is predicted. A model predictive control method is applied to design an automatic controller for thermal power control in PWRs. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The objectives of the proposed model predictive controller are to minimize both the difference between the predicted core coolant temperature and the desired one, and the variation of the control rod positions. Also, the objectives are subject to maximum and minimum control rod positions and maximum control rod speed. Therefore, the genetic algorithm that is appropriate to accomplish multiple objectives is used to optimize the model predictive controller. A 3-dimensional nuclear reactor analysis code, MASTER that was developed by Korea Atomic Energy Research Institute (KAERI), is used to verify the proposed controller for a nuclear reactor. From results of numerical simulation to check the performance of the proposed controller at the 5%/min ramp increase or decrease of a desired load and its 10% step increase or decrease which are design requirements, it was found that the nuclear power level controlled by the proposed controller could track the desired power level very well.

  • PDF

Predictive and Preventive Maintenance using Distributed Control on LonWorks/IP Network

  • Song, Ki-Won
    • International Journal of Safety
    • /
    • 제5권2호
    • /
    • pp.6-11
    • /
    • 2006
  • The time delay in servo control on LonWorks/IP Virtual Device Network (VDN) is highly stochastic in nature. LonWorks/IP VDN induced time delay deteriorates the performance and stability of the real-time distributed control system and hinders an effective preventive and predictive maintenance. Especially in real-time distributed servo applications on the factory floor, timely response is essential for predictive and preventive maintenance. In order to guarantee the stability and performance of the system for effective preventive and predictive maintenance, LonWorks/IP VDN induced time delay needs to be predicted and compensated for. In this paper position control simulation of DC servo motor using Zero Phase Error Tracking Controller (ZPETC) as a feedforward controller, and Internal Model Controllers (IMC) based on Smith predictor with disturbance observer as a feedback controller is performed. The validity of the proposed control scheme is demonstrated by comparing the IMC based on Smith predictor with disturbance observer.