• Title/Summary/Keyword: Model pile test

Search Result 393, Processing Time 0.022 seconds

A Study on Optimized Artificial Neural Network Model for the Prediction of Bearing Capacity of Driven Piles (항타말뚝의 지지력 예측을 위한 최적의 인공신경망모델에 관한 연구)

  • Park Hyun-Il;Seok Jeong-Woo;Hwang Dae-Jin;Cho Chun-Whan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.15-26
    • /
    • 2006
  • Although numerous investigations have been performed over the years to predict the behavior and bearing capacity of piles, the mechanisms are not yet entirely understood. The prediction of bearing capacity is a difficult task, because large numbers of factors affect the capacity and also have complex relationship one another. Therefore, it is extremely difficult to search the essential factors among many factors, which are related with ground condition, pile type, driving condition and others, and then appropriately consider complicated relationship among the searched factors. The present paper describes the application of Artificial Neural Network (ANN) in predicting the capacity including its components at the tip and along the shaft from dynamic load test of the driven piles. Firstly, the effect of each factor on the value of bearing capacity is investigated on the basis of sensitivity analysis using ANN modeling. Secondly, the authors use the design methodology composed of ANN and genetic algorithm (GA) to find optimal neural network model to predict the bearing capacity. The authors allow this methodology to find the appropriate combination of input parameters, the number of hidden units and the transfer structure among the input, the hidden and the out layers. The results of this study indicate that the neural network model serves as a reliable and simple predictive tool for the bearing capacity of driven piles.

An Experimental Study on the Stability of Assembled Earth Retaining Wall in Sandy Ground (사질토 지반에 설치된 조립식 지주옹벽(AER)의 안정성에 관한 실험적 연구)

  • Yoo, Jae-Won;Im, Jong-Chul;Hwang, Sung-Pil;Kim, Chang-Young;Choi, Jung-Hyun;Kim, Hong-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.2
    • /
    • pp.43-52
    • /
    • 2016
  • Assembled Earth Retaining wall (AER-wall is used here) using back pile (back supporting beam is used from here) has been developed at Pusan National University. Both cost and time have been significantly reduced because AER-wall can be fabricated in a shop. Also its stability has been improved with a back supporting beam reducing earth pressure. In this study, the test results were analyzed after laboratory model tests were performed. The lateral displacement of AER-wall significantly decreased with both inclined wall and back supporting beams. As a result, the stability of AER-wall and effect of back supporting beam have been analyzed and verified.

Iodine Stress Corrosion Cracking of Zircaloy-4 Tubes

  • Moon, Kyung-Jin;Lee, Byung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.65-72
    • /
    • 1978
  • In this paper, it is attempted to investigate the phenomena of iodine stress corrosion cracking of Zircaloy-4 cladding failures in reactor through the results of similar out-of-pile test in iodine vapour. The main result of this experiment is a finding of the relation between the threshold stress which can lead to iodine stress corrosion cracking of Zircaloy-4 tube and the iodine concentration. The values of critical stress and the critical iodine concentration are also obtained. A model which relates failure time of Zircaley-4 tube to failure stress and iodine concentration is suggested as follows: log t$_{F}$ =5.5-(3/2)log$_{c}$-4log $\sigma$ where t$_{F}$ : failure time, minutes c: iodne concentration, mg/㎤ $\sigma$: stress, 10$^4$psi.

  • PDF

Experimental Study on the Effect of Drilling Fluid with Different Mix Designs for Bore Hole Collapse Prevention (시추 안정액 배합설계에 따른 공벽 붕괴방지 효과에 관한 실험적 연구)

  • Yoo, Chung-Sik;Choi, Jung-Hyuk;Han, Yun-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • This paper presents the results of a reduced-scale physical model investigation into the effect of drilling fluid with different mix designs for bore hole collapse prevention. The bore hole collapse prevention mechanism for the bentonite based drilling fluid was first discussed together with the effect of conditioning with different additives on engineering characteristics of bentonite based drilling fluid. Reduced-scale model tests were then carried out considering field procedures for cases with a decomposed granitic soil with 20% fines and a sand with various drilling fluids with different mix designs. The results indicated that the addition of polymer to the bentonite based drilling fluid decreases the amount of drilling fluid injected, the drilling fluid infiltration thickness and increases the final depth of excavation. Also revealed is that the effect of polymer on the performance of drilling fluid is more pronounced in the decomposed granite soil with 20% fines than the sand. Practical implications of the findings from this study are discussed in great detail.

Assessment of the severe accident code MIDAC based on FROMA, QUENCH-06&16 experiments

  • Wu, Shihao;Zhang, Yapei;Wang, Dong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.579-588
    • /
    • 2022
  • In order to meet the needs of domestic reactor severe accident analysis program, a MIDAC (Module Invessel Degraded severe accident Analysis Code) is developed and maintained by Xi'an Jiaotong University. As the accuracy of the calculation results of the analysis program is of great significance for the formulation of severe accident mitigation measures, the article select three experiments to evaluate the updated severe accident models of MIDAC. Among them, QUENCH-06 is the international standard No.45, QUENCH-16 is a test for the analysis of air oxidation, and FROMA is an out-of-pile fuel rod melting experiment recently carried out by Xi'an Jiaotong University. The heating and melting model with lumped parameter method and the steam oxidation model with Cathcart-Pawel and Volchek-Zvonarev correlations combination in MIDAC could better meet the needs of severe accident analysis. Although the influence of nitrogen still need to be further improved, the air oxidation model with NUREG still has the ability to provide guiding significance for engineering practice.

Study on the effect of long-term high temperature irradiation on TRISO fuel

  • Shaimerdenov, Asset;Gizatulin, Shamil;Dyussambayev, Daulet;Askerbekov, Saulet;Ueta, Shohei;Aihara, Jun;Shibata, Taiju;Sakaba, Nariaki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2792-2800
    • /
    • 2022
  • In the core of the WWR-K reactor, a long-term irradiation of tristructural isotopic (TRISO)-coated fuel particles (CFPs) with a UO2 kernel was carried out under high-temperature gas-cooled reactor (HTGR)-like operating conditions. The temperature of this TRISO fuel during irradiation varied in the range of 950-1100 ℃. A fission per initial metal atom (FIMA) of uranium burnup of 9.9% was reached. The release of gaseous fission products was measured in-pile. The release-to-birth ratio (R/B) for the fission product isotopes was calculated. Aspects of fuel safety while achieving deep fuel burnup are important and relevant, including maintaining the integrity of the fuel coatings. The main mechanisms of fuel failure are kernel migration, silicon carbide corrosion by palladium, and gas pressure increase inside the CFP. The formation of gaseous fission products and carbon monoxide leads to an increase in the internal pressure in the CFP, which is a dominant failure mechanism of the coatings under this level of burnup. Irradiated fuel compacts were subjected to electric dissociation to isolate the CFPs from the fuel compacts. In addition, nondestructive methods, such as X-ray radiography and gamma spectrometry, were used. The predicted R/B ratio was evaluated using the fission gas release model developed in the high-temperature test reactor (HTTR) project. In the model, both the through-coatings of failed CFPs and as-fabricated uranium contamination were assumed to be sources of the fission gas. The obtained R/B ratio for gaseous fission products allows the finalization and validation of the model for the release of fission products from the CFPs and fuel compacts. The success of the integrity of TRISO fuel irradiated at approximately 9.9% FIMA was demonstrated. A low fuel failure fraction and R/B ratios indicated good performance and reliability of the studied TRISO fuel.

Mock-Up Test for Connection of New-Old Concrete of Footing (확대기초의 신구 콘크리트 접합 모형실험)

  • Hwang, Chul-Sung;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.66-71
    • /
    • 2018
  • In general, when an existing pier is enlarged and reinforced using a small diameter pile, bonded anchor with deformed reinforcing bars is used to maintain the integrity of the joint. However, in the case of bonded anchors, the performance depends largely on the type of joint material. Nevertheless, unlike mechanical anchors, there is no standard method for designing appropriate design methods and proper performance evaluation. Therefore, in this study, the performance of the anchoring anchor was evaluated by performing a model experiment using the reinforcing bars and anchor reinforcing bars. Experimental results show that the structural performance of the unbonded specimen is the best, and the failure mode is the punching shear failure. The deflection of the end of the member is smaller than that of the unconnected member, The deflection of the connected member is larger than the deflection of the small connected member. As the load increases, the possibility of slippage of the anchor steel or fold connection rebar is high.

The Behavior of Piled Bridge Abutments Subjected to Lateral Soil Movements - Design Guidelines - (측방유동을 받는 교대말뚝기초의 거동분석 (II) - 측방유동 판정기준 -)

  • 이진형;서정주;정상섬;장범수
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.21-29
    • /
    • 2003
  • In this study, practical guidelines to check the possibility of some lateral movement of piled abutment were investigated. In these tests, both the depth of soft clay and the rate of embankment construction are chosen to examine the effect on lateral soil movements. The depth of soft clay layer varies from 5.2 m to 11.6 m, and the rate of embankment construction has two types : staged construction(1m/30days, 1m/15days) and instant construction. Various measuring instruments such as LVDTs, strain gauges, pressure cells, and pore pressure transducers are installed in designed positions in ordo. to clarify the soil - pile interaction and the short and long term behavior f3. piled bridge abutments adjacent to surcharge loads. The validity of the proposed guidelines by centrifuge test was compared with the observed performance by lateral movement index, F(Japan Highway Public Corporation) and modified I index(Korea Highway Corporation). Based on the results obtained, the critical values off and modified I, as a practical guidelines, are proposed as 0.03 and 2.0, respectively.

Shear Strength and Compressibility of Oyster Shell-Sand Mixtures for Sand Compaction Pile (SCP공법 적용을 위한 굴패각-모래 혼합토의 전단과 압축특성)

  • Yoon Gil-Lim;Yoon Yeo-Won;Chae Kwang-Seok;Kim Jae-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.17-23
    • /
    • 2004
  • Strength and deformation characteristics of oyster shell-sand mixtures were investigated to utilize waste oyster shell being treated as a waste material. Standard penetration test (SPT) is a common method to obtain in-situ strength in sand. However, in case of oyster shell-sand mixtures, there was no information between SPT N-value and internal friction angle of mixture soils. In this paper SPT experiments from several large scaled model chamber tests and large scaled direct shear tests were carried out with varying unit weight of oyster shell-sand mixtures. Appropriate correlations were in tile study observed among N-value, unit weight and internal friction angle, which make it possible to estimate in-situ strength from SPT and the coefficient of volume compressibility from the confined compression tests to compute the settlement of oyster shell-sand mixtures.

Centrifugal Test on Behavior of the Dolphin Structure under Ship Collision (선박충돌 시 돌핀 구조물의 거동에 대한 원심모형실험)

  • Oh, SeungTak;Bae, WooSeok;Cho, SungMin;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.61-70
    • /
    • 2011
  • The impact protection system consists of an arrangement of circular sheet pile cofferdams-denoted dolphin structuredeeply embedded in the seabed, filled with crushed rock and closed at the top with a robust concrete cap. Centrifuge model tests were performed to investigation the behaviors of dolphins in this study. Total 7 quasi-model tests and 11 dynamic model tests were performed. The main experimental results can be summarized as follows. Firstly, The experimental force-displacement results for quasi-static tests show a limited influence on the initial stiffness of the structure from the change in fill density and the related change in the stiffness of the fill. And by comparing the dissipation at the same dolphin displacement it was found that the denser fill increase the dissipation by 16% for the 20m dolphin and by 23% for the 30m dolphin. The larger sensitivity for the large dolphin is explained by a larger contribution to the dissipation from strain in the fill. In low level impacts the dynamic force-response is up to 26~58% larger than the quasi-static and the dissipation response is showed larger in small displacement. Hence, it is concluded conservative to use the quasi-static response characteristics in the approximation of the response, and it is further concluded that the dolphin resistance to low level impacts is demonstrated to be equivalent and even superior to the high level impacts.