• Title/Summary/Keyword: Model material experiment

Search Result 482, Processing Time 0.023 seconds

Comparision Study Between Modeling and Experiment of the Breakdown Voltage for AC Plasma Display Panel (AC 플라즈마 디스플레이패널의 방전개시전압에 모델과 실험의 비교에 관한 연구)

  • 박장식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.1039-1044
    • /
    • 2000
  • Breakdown voltage model and expertiments are compared for discharge cells of AC plasma display panel. In the model, discharge paths are assumed to be initial electric field lines and the one-dimensional continuity equation is applied to the charged particle transport at each field line. The comparisons are performed in the wide range of gas pressure (50-600torr), Xe partial pressure over total pressure (1-6%), sustain electrode gap(100-1000$\mu\textrm{m}$), wall height(130, 300$\mu\textrm{m}$), and voltage pulse width(2-6${\mu}$s). The presented breakdown voltage model well agree with experiments in the above wide range. The increase of breakdown voltage with the decrease of the width(L) of protruding electrode is also described by the model.

  • PDF

Measurement of Structural Properties of PLA Filament as a Supplier of 3D Printer (3D 프린터에 공급되는 PLA 필라멘트의 물성치 측정)

  • Choi, Won;Woo, Jae-Hyeong;Jeon, Jeong-bae;Yoon, Seong-soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.141-152
    • /
    • 2015
  • Most of agricultural structures are consisted of complex components and exposed to various boundary conditions. There have been no ways to express those structures exactly for model experiment. As an alternative, 3D printer can produce any type of solid model. However, there are limited informations related to structural experiments using 3D printer. The object of this study gives the basic informations to structural engineers who try to use 3D printer for model experiment. When PLA was used as a supplier for 3D printer, the outcomes showed less heat deformation to compare with ABS. To test the material properties, two kinds of experiments (three-point flexibility test and compression test) were executed using universal testing machine. In three-point flexibility test, plastic hinge and its deformation were developed as observed in material such as steel. The behavior was in a linear elastic state, and elastic bending modulus and yield force were evaluated. In the compression test using unbraced columns with hinge-hinge boundary condition, the constant yield forces were observed regardless of different lengths in all columns with same section size, whereas the compressive elastic modulus was increased as the length of column was increased. The suggested results can be used for model experiments of various agricultural structures consisted of single material.

High-Velocity Impact Behavior Characteristics of Aluminum 6061 (알루미늄 6061의 고속 충격 거동 특성 연구)

  • Byun, Seon-Woo;Ahn, Sang-Hyeon;Baek, Jun-Woo;Lee, Soo-Yong;Roh, Jin-Ho;Jung, Il-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.465-470
    • /
    • 2022
  • This paper studied the high-velocity impact behavior characteristics of metal materials by crosschecking the high-velocity impact analysis with the high-velocity impact experiment results of aluminul 6061. The coefficients of the Huh-Kang material model and the Johnson-Cook fracture model were calculated through quasi-static using MTS-810 and dynamic experimenting using the Hopkinson bar equipment for high-velocity impact analysis. The penetration velocity and shape were predicted through high-velocity impact analysis using the LS-DYNA. The resultes were compared with the experiment results using a high-velocit experiment equipment. It is intended to be used the containment evaluation research for aircraft gas turbine engine blade.

Displacement Behaviour of Cut-and-Cover Tunnel Lining by Numerical Analysis (수치해석에 의한 복개터널 라이닝의 변위거동)

  • Lee, Myung-Woog;Park, Byung-Soo;Jeon, Yong-Bae;Yoo, Nam-Jea
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.227-238
    • /
    • 2004
  • This paper is results of experimental and nunerical works on the behavior of the cut-and-cover tunnel. Centrifuge model tests were performed to simulate the behavior of the cut-and-cover tunnels having cross sections of national road and subway tunnels. Model experiments were carried out with changing the cut slope and the slope of filling ground surface. Displacements of tunnel lining resulted from artificially accelerated gravitational force up to 40g of covered material used in model tests, were measured during centrifuge model tests. In model tests, Jumunjin Standard Sand with the relative density of 80 % and the zinc plates were used for the covered material and the flexible tunnel lining, respectively. Basic soil property tests were performed to obtain it's the property of Jumumjin Standard Sand. Shear strength parameters of Jumunjin Standard Sand were obtained by performing the triaxial compression tests. Direct shear tests were also carried out to find the mechanical properties of the interface between the lining and the covered material. Numerical analysis with the commercially available program of FLAC were performed to compare with results of centrifuge model experiment In numerical modelling. Mohr-Coulomb elasto-plastic constitutive model was used to simulaye the behavoor of Jumunjin Standard Sand and the interface element between the lining and the covered material was implemented to simulate the interaction between them. Compared results between model tests and numerical estimation with respect to displacement of the lining showed in good agreements.

  • PDF

Autofrettage Analysis of Compound Cylinder with Power Function Strain Hardening Model (멱함수 가공경화 모델을 이용한 복합실린더의 자긴가공해석)

  • Park, Jae-Hyun;Lee, Young-Shin;Shim, Woo-Sung;Kim, Jae-Hoon;Cha, Ki-Up;Hong, Suk-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.488-495
    • /
    • 2008
  • In order to achieve long fatigue lifetimes for cyclically pressurized thick cylinders, multi-layered compound cylinder has been proposed. Such compound cylinder involves a shrink-fit procedure incorporating a monobloc tube which has previously undergone autofrettage. The basic autofrettage theory assumes elastic-perfectly plastic behaviour. Because of the Bauschinger effect and strain-hardening, most materials do not display elastic-perfectly plastic properties and consequently various autofrettage mo dels are based on different simplified material strain-hardening models, which is assumed that combination of linear strain-hardenig and power strain-hardening model. This approach gives a more accurate prediction than the elastic-perfectly plastic model and is suitable for different strain-hardening materials. In this paper, a general autofrettage model that incorporates the material strain-hardening relationship and the Bauschinger effect, based upon the actual tensile-compressive stress-strain curve of a material was proposed. The model was obtained using the von Mises yield criterion and plane strain condition. The tensile-compressive stress-strain curve was obtained by experiment. The parameters needed in the model were determined by fitting the actual tensile-compressive curve of the material. Finally, strain- hardening model was compared with elastic-perfectly plastic model.

A Study on the Impact Characteristics of the Composite Materials for Low Velocity to Be Applied a Rail Vehicle (철도차량에 적용될 복합재료의 저속충격특성에 관한 연구)

  • 류충현;이영신;김재훈;나재연;조정미;박병준
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.851-856
    • /
    • 2002
  • In this study, the property against low velocity of the compesite material, which will be applied a rail vehicle, is shown using experiment and a finite element code. The property can be denoted the resistance of impact force, which is defined by maximum impact force over damage area. A damage propagation model is necessary to estimate accurately the impact property of a composite material through FEM code.

  • PDF

Optimization of Biphenyl Chloromethylation Process

  • Pak, V.V.;Karimov, R.K.;Shakhidoyatov, Kh.M.;Soh, Deawha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.707-710
    • /
    • 2000
  • Optimization of the biphenyl chloromethylation process with para-formaldehyde has been investigated in the presence of ZnCl$_2$with HCI gas by the Box-Wilson method of mathematical planning of experiment. The 4,4'- (dichloromethyl)-biphenyl yield dependence on the biphenyl para-formaldehyde ratio, temperature and reaction duration has been studied. A mathematical model of the process has been developed and optimal conditions for the biphenyl chloromethylation procedure has been determined.

  • PDF

Elastoplastic Behavior and Creep Analysis of Solder in a FC-PBGA Package (플립 칩 패키지 솔더의 탄소성 거동과 크립 해석)

  • Choi, Nam-Jin;Lee, Bong-Hee;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.21-28
    • /
    • 2010
  • Creep behaviors of the solder balls in a flip chip package assembly during thermal cycling test is investigated.. A material models used in the finite element analysis are viscoplastic model introduced by Anand and creep model called partitioned model. Experiment of two temperature cycles using moir$\acute{e}$ interferometry is conducted to verify the reliability of material models for the analysis of thermo-mechanical behavior. Bending deformations of the assemblies and average strains of the solder balls due to temperature change and dwell time are investigated. The results show that time-dependent shear strain of solder by the partitioned model is in excellent agreement with those by moir$\acute{e}$ interferometry, while there is considerable difference between results by Anand model and experiment. In this paper, the partitioned model is employed for the time-dependent creep analysis of the FC-PBGA package. It is also shown that the thermo-mechanical stress becomes relaxed by creep behavior at high temperature during temperature cycles.

Experiment on Piping in Pervious Foundation (투수성(透水性) 기초지반(基礎地盤)의 Piping에 관(關)한 실험(實驗))

  • Kwon, Moo Nam;Lee, Sang Ho
    • Current Research on Agriculture and Life Sciences
    • /
    • v.3
    • /
    • pp.44-54
    • /
    • 1985
  • In order to determine the critical head values of boiling and piping, several experiments were performed for 3 cases of model dykes on 7 kinds of pervious foundations. The results obtained are as follows : 1. It appears that the coarser and the denser the foundation material, the higher the critical heads of boiling and piping, and that the lower the permeability of the foundation, the higher the critical heads of boiling and piping. 2. A difference in head between the moments of boiling and piping is greater in the case 2 or case 3 than in the case 1 because of the additional hydraulic resistance. And it is found that the coarser the foundation material, the greater the head difference. 3. The critical heads of boiling and piping is directly prortional to the seepage length. 4. The piezometric heads close to the singular point are of the same magnitude, provided that the geometry of the model dyke and foundation material are the same. 5. Variations of the weight of model dyke can not affect the critical head. According to the conclusions shown above, the critical head of piping can be more practically predicted for prototype using the results from laboratory tests on scale model.

  • PDF

Inverse model for pullout determination of steel fibers

  • Kozar, Ivica;Malic, Neira Toric;Rukavina, Tea
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.197-209
    • /
    • 2018
  • Fiber-reinforced concrete (FRC) is a material with increasing application in civil engineering. Here it is assumed that the material consists of a great number of rather small fibers embedded into the concrete matrix. It would be advantageous to predict the mechanical properties of FRC using nondestructive testing; unfortunately, many testing methods for concrete are not applicable to FRC. In addition, design methods for FRC are either inaccurate or complicated. In three-point bending tests of FRC prisms, it has been observed that fiber reinforcement does not break but simply pulls out during specimen failure. Following that observation, this work is based on an assumption that the main components of a simple and rather accurate FRC model are mechanical properties of the concrete matrix and fiber pullout force. Properties of the concrete matrix could be determined from measurements on samples taken during concrete production, and fiber pullout force could be measured on samples with individual fibers embedded into concrete. However, there is no clear relationship between measurements on individual samples of concrete matrix with a single fiber and properties of the produced FRC. This work presents an inverse model for FRC that establishes a relation between parameters measured on individual material samples and properties of a structure made of the composite material. However, a deterministic relationship is clearly not possible since only a single beam specimen of 60 cm could easily contain over 100000 fibers. Our inverse model assumes that the probability density function of individual fiber properties is known, and that the global sample load-displacement curve is obtained from the experiment. Thus, each fiber is stochastically characterized and accordingly parameterized. A relationship between fiber parameters and global load-displacement response, the so-called forward model, is established. From the forward model, based on Levenberg-Marquardt procedure, the inverse model is formulated and successfully applied.