• Title/Summary/Keyword: Model integration

Search Result 2,823, Processing Time 0.029 seconds

Study on Improving the System for the Revitalization and Efficient Management of the Local Commercial Area (지역상권 활성화 및 효율적 관리를 위한 제도 개선방안 연구)

  • Kim, Seung-Hee;Kim, Young-Ki
    • Journal of Distribution Science
    • /
    • v.11 no.5
    • /
    • pp.55-62
    • /
    • 2013
  • Purpose - This study aims to determine the problems and limitations of the Commercial Area Activation System, which was created by a special law for promoting traditional markets and shopping districts to revitalize and efficiently manage the central commercial area in different regions. We also suggest different options for its improvement. Research design, data, and methodology - We also look into the problems of which is being promoted as a demonstration project, from the aspects of legal text and guidelines. Results - The current commercial area activation system has several problems. First, the establishment of a comprehensive basic plan on the commercial area activation is not a requirement. Second, the benefit principle should be established to prevent the moral laxity of merchants who serve important roles in the main components of the commercial area activation business when they conduct their business. Third, the current special law constrains the commercial management organization, as under the civil law yields a limitation on finding a profitable business model. Fourth, to efficiently, constructing a system that links the other central government businesses and is needed. into a regional development budget or a budget for funding small businesses that the central government can control, which is effective. Further, we offer some suggestions for medium- and long-term policies. First, an integrated coordination mechanism at the central office level should be installed while setting the basic policy to revitalize the Based on this policy, local governments need a system that exclusively based on the after establishing a comprehensive plan for urban regeneration and getting approval from the integration organization. Second, a system that enables an understanding of the problems with business promotion by monitoring the procedure of supporting projects and regularly assessing business achievements is needed. Third, a plan is needed for resolving conflicts between various interested parties that adopts the commercial area activation system for carrying out a total redevelopment of the commercial area where small shops are densely located. A market maintenance project has been conducted as a means to recover our traditional market, which was economically depressed, and to revive the local economy, but it is mostly conducted in the form of reconstruction or redevelopment and represents the interests of landowners and merchants. Thus, it is most likely to lead to a gradual disappearance of traditional markets. Conclusions - This study looks primarily into the problems that appeared in the legal text or the guidelines regarding the direction of improvement of the commercial area activation business that has been going on as a demonstration project since 2011 and suggests some solutions.

  • PDF

Comparative studies of various transfection processes for the optimal luminescence signal analysis (최적의 luminescence 신호 분석을 위한 유전자 전달 방법의 비교연구)

  • Park, Seohyun;Lee, Sunghou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.640-647
    • /
    • 2016
  • By minimizing fluorescence interference phenomena, aequorin-based luminescence technology can provide a relatively sensitive detection platform with integration of $G{\alpha}16$ protein in order to track internal calcium mobilization by G protein-coupled receptors (GPCR). In this type of cell-based functional assay format, it is essential to optimize the transfection process of a receptor and $G{\alpha}16$ protein. For this study, corticotropin releasing factor receptor subtype 2(CRF2) was set as a model system to generate three stable cells with CRF2 and $G{\alpha}16$ in addition to transiently transfected cells under three different conditions. Agonist (sauvagine) and antagonist (K41498) responses in those cells were analyzed to develop the optimum transfection process. As a result, the effective signal ratio in the dose response experiments of sauvagine and K41498 were at least 10-fold higher (z'=0.77) in CRF2-$G{\alpha}16$ stable cells. For the transient transfection cells, stable expression of $G{\alpha}16$ prior to the CRF2 represented a two-fold higher signal (z'=0.84) than the other cases of transient transfection. In conclusion, for the utilization of transient transfection processes to develop a cell-based GPCR functional assay system, it is suggested to introduce various target receptors after stable expression of $G{\alpha}16$ protein.

Fault Injection Based Indirect Interaction Testing Approach for Embedded System (임베디드 시스템의 결함 주입 기반 간접 상호작용 테스팅 기법)

  • Hossain, Muhammad Iqbal;Lee, Woo Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.9
    • /
    • pp.419-428
    • /
    • 2017
  • In an embedded system, modules exchange data by interacting among themselves. Exchanging erroneous resource data among modules may lead to execution errors. The interacting resources produce dependencies between the two modules where any change of the resources by one module affects the functionality of another module. Several investigations of the embedded systems show that interaction faults between the modules are one of the major cause of critical software failure. Therefore, interaction testing is an essential phase for reducing the interaction faults and minimizing the risk. The direct and indirect interactions between the modules generate interaction faults. The direct interaction is the explicit call relation between the modules, and the indirect interaction is the remaining relation that is made underneath the interface that possesses data dependence relationship with resources. In this paper, we investigate the errors that are based on the indirect interaction between modules and introduce a new test criterion for identifying the errors that are undetectable by existing approaches at the integration level. We propose a novel approach for generating the interaction model using the indirect interaction pattern and design test criteria that are based on different interaction errors to generate test cases. Finally, we use the fault injection technique to evaluate the feasibility and effectiveness of our approach.

Hotspot Detection for Land Cover Changes Using Spatial Statistical Methods (공간통계기법을 이용한 토지피복변화의 핫스팟 탐지)

  • Lee, Jeong-Hun;Kim, Sang-Il;Han, Kyung-Soo;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.601-611
    • /
    • 2011
  • Land cover changes are occurring for a variety of reasons such as urbanization, infrastructure construction, desertification, drought, flood, and so on. Many researchers have studied the cause and effect of land cover changes, and also the methods for change detection. However, most of the detection methods are based on the dichotomy of "change" and "not change" according a threshold value. In this paper, we present a change detection method with the integration of probability, spatial autocorrelation, and hotspot detection. We used the AMOEBA (A Multidirectional Ecotope-Based Algorithm) and developed the AMOEBA-CH (core hotspot) because the original algorithm tends to produce too many clusters. Our method considers the probability of land cover changes and the spatial interactions between each pixel and its neighboring pixels using a local spatial autocorrelation measure. The core hotspots of land cover changes can be delineated by a contiguity-dominance model of our AMOEBA-CH method. We tested our algorithm in a simulation for land cover changes using NDVI (Normalized Difference Vegetation Index) data in South Korea between 2000 and 2008.

Rotordynamic Analysis of a Dual-Spool Turbofan Engine with Focus on Blade Defect Events (블레이드 손상에 따른 이축식 터보팬 엔진의 동적 안정성 해석)

  • Kim, Sitae;Jung, Kihyun;Lee, Junho;Park, Kihyun;Yang, Kwangjin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • This paper presents a numerical study on the rotordynamic analysis of a dual-spool turbofan engine in the context of blade defect events. The blades of an axial-type aeroengine are typically well aligned during the compressor and turbine stages. However, they are sometimes exposed to damage, partially or entirely, for several operational reasons, such as cracks due to foreign objects, burns from the combustion gas, and corrosion due to oxygen in the air. Herein, we designed a dual-spool rotor using the commercial 3D modeling software CATIA to simulate blade defects in the turbofan engine. We utilized the rotordynamic parameters to create two finite element Euler-Bernoulli beam models connected by means of an inter-rotor bearing. We then applied the unbalanced forces induced by the mass eccentricities of the blades to the following selected scenarios: 1) fully balanced, 2) crack in the low-pressure compressor (LPC) and high pressure compressor (HPC), 3) burn on the high-pressure turbine (HPT) and low pressure compressor, 4) corrosion of the LPC, and 5) corrosion of the HPC. Additionally, we obtained the transient and steady-state responses of the overall rotor nodes using the Runge-Kutta numerical integration method, and employed model reduction techniques such as component mode synthesis to enhance the computational efficiency of the process. The simulation results indicate that the high-vibration status of the rotor commences beyond 10,000 rpm, which is identified as the first critical speed of the lower speed rotor. Moreover, we monitored the unbalanced stages near the inter-rotor bearing, which prominently influences the overall rotordynamic status, and the corrosion of the HPC to prevent further instability. The high-speed range operation (>13,000 rpm) coupled with HPC/HPT blade defects possibly presents a rotor-case contact problem that can lead to catastrophic failure.

Validating the Structural Behavior and Response of Burj Khalifa: Synopsis of the Full Scale Structural Health Monitoring Programs

  • Abdelrazaq, Ahmad
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 2012
  • New generation of tall and complex buildings systems are now introduced that are reflective of the latest development in materials, design, sustainability, construction, and IT technologies. While the complexity in design is being overcome by the availability and advances in structural analysis tools and readily advanced software, the design of these buildings are still reliant on minimum code requirements that yet to be validated in full scale. The involvement of the author in the design and construction planning of Burj Khalifa since its inception until its completion prompted the author to conceptually develop an extensive survey and real-time structural health monitoring program to validate all the fundamental assumptions mad for the design and construction planning of the tower. The Burj Khalifa Project is the tallest structure ever built by man; the tower is 828 meters tall and comprises of 162 floors above grade and 3 basement levels. Early integration of aerodynamic shaping and wind engineering played a major role in the architectural massing and design of this multi-use tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria established at the onset of the project design. Understanding the structural and foundation system behaviors of the tower are the key fundamental drivers for the development and execution of a state-of-the-art survey and structural health monitoring (SHM) programs. Therefore, the focus of this paper is to discuss the execution of the survey and real-time structural health monitoring programs to confirm the structural behavioral response of the tower during construction stage and during its service life; the monitoring programs included 1) monitoring the tower's foundation system, 2) monitoring the foundation settlement, 3) measuring the strains of the tower vertical elements, 4) measuring the wall and column vertical shortening due to elastic, shrinkage and creep effects, 5) measuring the lateral displacement of the tower under its own gravity loads (including asymmetrical effects) resulting from immediate elastic and long term creep effects, 6) measuring the building lateral movements and dynamic characteristic in real time during construction, 7) measuring the building displacements, accelerations, dynamic characteristics, and structural behavior in real time under building permanent conditions, 8) and monitoring the Pinnacle dynamic behavior and fatigue characteristics. This extensive SHM program has resulted in extensive insight into the structural response of the tower, allowed control the construction process, allowed for the evaluation of the structural response in effective and immediate manner and it allowed for immediate correlation between the measured and the predicted behavior. The survey and SHM programs developed for Burj Khalifa will with no doubt pioneer the use of new survey techniques and the execution of new SHM program concepts as part of the fundamental design of building structures. Moreover, this survey and SHM programs will be benchmarked as a model for the development of future generation of SHM programs for all critical and essential facilities, however, but with much improved devices and technologies, which are now being considered by the author for another tall and complex building development, that is presently under construction.

3-D Geological Structure Interpretation by the Integrated Analysis of Magnetotelluric and Gravity Model at Hwasan Caldera (자기지전류 및 중력 모델의 복합해석을 통한 화산칼데라 지역의 3차원 지질구조 해석)

  • Park, Gye-Soon;Lee, Chun-Ki;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.548-559
    • /
    • 2011
  • 3-D Multi-geophysical surveys were carried out around the Hwasan caldera at the Euisung Sub-basin. To overcome the limitations of resolutions in previous studies, dense gravity data and magnetotelluric (MT) data were obtained and analyzed. In this study, the independent inversion models from gravity and MT data were integrated using correlation and classification approaches for 3-D imaging of the geologic structures. A Structure Index (SI) method was proposed and applied to the integration and classification analyses. This method consists of Type Angle (TA) and Type Intensity (TI) values, which are estimated by the spatial correlation and abnormality of the physical properties. The SI method allowed the classification analysis to be effectively performed. Major findings are as follows: 1) pyroclastic rocks around the central area of the Hwasan caldera with lower density and resistivity than those of neighboring regions extended to a depth of around 1 km, 2) intrusive igneous rocks with high resistivity and density were imaged around the ring fault boundary, and 3) a basement structure with low resistivity and high density, at a depth of 3-5 km, was inferred by the SI analysis.

Development of Design Process Management Model using Dependency Structure Matrix for Constructability (시공성을 위한 Dependency Structure Matrix 기반의 설계 프로세스 관리 모델 개발)

  • Park, Moon-Seo;Ham, Young-Jib;Lee, Hyun-Soo;Kim, Woo-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.5
    • /
    • pp.65-74
    • /
    • 2010
  • The design with construction knowledge and experience can eliminate inefficiency in the process of construction and improve productivity in all phase of construction project. To utilize constructability knowledge most effectively in design phase, the information must be made available to the design team at the proper point in time. Current methods for effective utilization of constructability knowledge have focused on the structuralization of constructability knowledge such as checklist, which lack the consideration of the proper point in time. However, constructability knowledge which is used at the inapposite point in time consequently leads to unnecessary rework. To minimize this inefficiency and improve productivity, project manager needs to consider the design process and know what constructability knowledge is required for specific design activities. This paper therefore presents a design process management using Dependency Structure Matrix (DSM) that focus on information flows between design activities and constructability knowledge. We expect that the results of this paper will support that design process management become comprehensive management related to every phase of construction project beyond design review or inspection in design phase, and be used as a basis of the integration of design and construction.

A Study on the Global Market Success through the Customer Value-based Corporate Strategy : The Case of Hilti (고객가치 기반 기업전략을 통한 글로벌 시장성공 : 전동공구기업 힐티의 사례)

  • Hong, Song Hon
    • International Commerce and Information Review
    • /
    • v.16 no.5
    • /
    • pp.151-178
    • /
    • 2014
  • The objective of the present case study is to analysis how effectively Hilti, which is a former family firm owned and managed by a family in Liechtenstein as a tiny european country, a land sandwiched between Switzerland and Austria, has made a global market success. Liechtenstein has $160km^2$ land and about 36,000 residents. Despite its small size of country, however, Hilti Corporation doesn't view its location as a liability in its business strategy. Hilti is a global leading provider of professional power tools in building, mining, civil engineering etc. Also, Hilti is a firm with a clear vision to become the leading industry partner for construction professionals and building installations through customer focus, high quality equipment, and tools and systems specially designed for specific jobs. This study considered Hilti as a good case, which verifies that born-conditions, endogenous factors according to Michael Porters diamond model does not decisive role more for international competitiveness of firms. Lessons from Hilti are that in order to obtain and sustain the global competitiveness of small and medium-sized firms in Korean manufacturing sector under high production cost, they have to do actively innovative. Also they can give to customers newer and higher customer-values than competitors in abroad give. The case summarizes that the strategy of Hilti for the global market success is comprised of several factors: Technological and organizational innovation, and a clear customer-value oriented business strategy and its implementation. Innovation and its integration into marketing for the customers value creation is central to Hilti's Success. The present case study is expected to provide insights and implication for many firms in Korea that are seeking to secure global presence and market success.

  • PDF

System Throughput of Cognitive Radio Multi-hop Relay Networks (무선인지 멀티홉 릴레이 네트워크의 시스템 스루풋)

  • Hassan, I.;Rho, Chang-Bae;Song, Ju-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.29-39
    • /
    • 2009
  • The need for radio spectrum is recently considered as a huge hurdle towards the rapid development of wireless networks. Large parts of the spectrum are allocated to licensed radio services in proprietary way. However, enormous success of the wireless services and technologies in the unlicensed bands has brought new ideas and innovations. In recent years cognitive radio has gained much attention for solving the spectrum scarcity problem. It changes the way spectrum is regulated so that more efficient spectrum utilization is possible. Multi-hop relay technology on the other hand has intensively been studied in the area of ad hoc and peer-to-peer networks. But in cellular network, only recently the integration of multi-hop capability is considered to enhance the performance significantly. Multi-hop relaying can extend the coverage of the cell to provide high data rate service to a greater distance and in the shadowed regions. Very few papers still exist that combine these methods to maximize the spectrum utilization. Thus we propose a network architecture combining these two technologies in a way to maximize the system throughput. We present the throughput capacity equations for the proposed system model considering various system parameters like utilization factor by the primary users and primary users' transmission radius and through extensive numerical simulations we analyze the significance of work.