• Title/Summary/Keyword: Model formulation

Search Result 1,676, Processing Time 0.027 seconds

Direct Simulation of Flows and Flow Noise around Moving Body by FDLBM with ALE Model (ALE모델을 갖는 차분격자볼츠만법에 의한 이동물체 주위의 유동장 및 유동소음의 직접계산)

  • Kang, Ho-Keun;Michihisa, Tsutahara;Kim, Myoung-Ho;Kim, Yu-Taek;Lee, Young-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.248-249
    • /
    • 2005
  • In this paper, flowfield and acoustic-field around moving bodies are simulated by the Arbitrary Lagrangian Eulerian (ALE) formulation in FDLBM. The effect of the ALE is checked by comparing flow about a square cylinder in ALE formulation and that in the fixed coordinates, and the results show good agreement. Matching procedure between the moving grid and fixed grid is also considered. The applied method in which the both grids are connected through buffer zone is shown to be superior to moving overlapped grid. Dipole-like emissions of sound wave from harmonically vibrating bodies in 2- and 3-dimensional cases are simulated.

  • PDF

Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment

  • Vinyas, M.;Kattimani, S.C.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.351-367
    • /
    • 2017
  • In this article, the multiphysics response of magneto-electro-elastic (MEE) cantilever beam subjected to thermo-mechanical loading is analysed. The equilibrium equations of the system are obtained with the aid of the principle of total potential energy. The constitutive equations of a MEE material accounting the thermal fields are used for analysis. The corresponding finite element (FE) formulation is derived and model of the beam is generated using an eight noded 3D brick element. The 3D FE formulation developed enables the representation of governing equations in all three axes, achieving accurate results. Also, geometric, constitutive and loading assumptions required to dimensionality reduction can be avoided. Numerical evaluation is performed on the basis of the derived formulation and the influence of various mechanical loading profiles and volume fractions on the direct quantities and stresses is evaluated. In addition, an attempt has been made to compare the individual effect of thermal and mechanical loading with the combined effect. It is believed that the numerical results obtained helps in accurate design and development of sensors and actuators.

Analysis of RC walls with a mixed formulation frame finite element

  • Saritas, Afsin;Filippou, Filip C.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.519-536
    • /
    • 2013
  • This paper presents a mixed formulation frame element with the assumptions of the Timoshenko shear beam theory for displacement field and that accounts for interaction between shear and normal stress at material level. Nonlinear response of the element is obtained by integration of section response, which in turn is obtained by integration of material response. Satisfaction of transverse equilibrium equations at section includes the interaction between concrete and transverse reinforcing steel. A 3d plastic damage model is implemented to describe the hysteretic behavior of concrete. Comparisons with available experimental data on RC structural walls confirm the accuracy of proposed method.

Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation

  • Daraei, Behnam;Shojaee, Saeed;Hamzehei-Javaran, Saleh
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.37-49
    • /
    • 2020
  • In this paper, free vibration finite element analysis of axially moving laminated composite beams subjected to axial tension is studied. It is assumed that the beam has a constant axial velocity and is subject to uniform axial tension. The analysis is based on higher-order theories that have been presented by Carrera Unified Formulation (CUF). In the CUF technique, the three dimensional (3D) displacement fields are expressed as the approximation of the arbitrary order of the displacement unknowns over the cross-section. This higher-order expansion is considered in equivalent single layer (ESL) model. The governing equations of motion are obtained via Hamilton's principle. Finally, several numerical examples are presented and the effect of the ply-angle, travelling speed and axial tension on the natural frequencies and beam stability are demonstrated.

An efficient computational method for stress concentration problems

  • Shrestha, Santosh;Ohga, Mitao
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.613-629
    • /
    • 2006
  • In this paper a recently developed scaled boundary finite element method (SBFEM) is applied to simulate stress concentration for two-dimensional structures. In addition, a simple and independent formulation for evaluating the coefficients, not only of the singular term but also higher order non-singular terms, of the stress fields near crack-tip is presented. The formulation is formed by comparing the displacement along the radial points ahead of the crack-tip with that of standard Williams' eigenfunction solution for the crack-tip. The validity of the formulation is examined by numerical examples with different geometries for a range of crack sizes. The results show good agreement with available solutions in literatures. Based on the results of the study, it is conformed that the proposed numerical method can be applied to simulate stress concentrations in both cracked and uncracked structure components more easily with relatively coarse and simple model than other computational methods.

Analysis of composite frame structures with mixed elements - state of the art

  • Ayoub, Ashraf
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.157-181
    • /
    • 2012
  • The paper presents a review of the application of the newly proposed mixed finite element model for seismic simulation of different types of composite frame structures. To evaluate the performance of the element, a comparison with displacement-based and force-based models is conducted. The study revealed that the mixed model is superior to the others in terms of both speed of convergence and numerical stability, and is therefore considered the most practical approach for modeling of composite structures. In this model, the element is derived using independent force and displacement shape functions. The nonlinear response of the frame element is based on the section discretization into fibers with uniaxial material models. The interfacial behavior is modeled using an inelastic interface element. Numerical examples to clarify the advantages of the model are presented for the following structural applications: anchored reinforcing bar problems, composite steel-concrete girders with deformable shear connectors, beam on elastic foundation elements, R/C girders strengthened with FRP sheets, R/C beam-columns with bond-slip, and prestressed concrete girders. These studies confirmed that the model represents a major advancement over existing elements in simulating the inelastic behavior of composite structures.

Numerical Analysis of Piezocone Test using Modified Cam-Clay Model (Modified Cam-Clay Model을 이용한 피에조콘 시험의 수치해석)

  • Kim, Dae-Kyu;Lee, Woo-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.89-99
    • /
    • 2001
  • In this study, the numerical analysis of piezocone penetration and dissipation tests has been conducted using the Modified Cam-Clay model, which is generally used in soil mechanics. The Modified Cam-Clay model and related mathematical equations in finite element derivation have been formulated in the Updated Lagrangian reference frame to take the large displacement and finite strain nature of piezocone penetration into consideration. The cone tip resistance, the pore water pressure, and the dissipation curve obtained from the finite element analysis have been compared and investigated with the experimental results from piezocone penetration test performed in Yangsan site. The numerical results showed good agreement with the experimental results; however, the better numerical simulation of the continuous and deep penetration needs further research.

  • PDF

A Study on Mechanical Analysis of Cable Logging Systems - with an Example of a Standing Skyline - (가선집재시스템 역학구조 해석에 관한 연구 - 고정식 가선집재시스템을 중심으로 -)

  • Chung, Joo Sang
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.1
    • /
    • pp.34-43
    • /
    • 1993
  • In this paper, the characteristics of cable logging operations are discussed from a standpoint of mechanics. An example of standing skyline operations is used to illustrate the mechanical principles. Using force and moment boundary conditions, the maximum allowable payload was formulated as a function of slope profile, system geometry and operation options. This formulation includes fundamental equations for log drag and single segment mechanics. The catenary link model is the basic assumption in simulating cable segment stretches. In order to demonstrate the solution procedures of the formulation, a computer model was developed. The model uses Secant algorithm to determine the solution of the complex nonlinear equation set. Finally, the computer model was demonstrated using a hypothetical data set.

  • PDF

Large Deformation Formulation of a Hypoelasto-plastic Constitutive Model for Soils (흙의 속도형식 탄소성구성모델에 대한 대변형도 정식화)

  • Oh, Se-Boong;Lee, Seung-Hyun;Kwon, Oh-Kyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.277-286
    • /
    • 2003
  • A constitutive equation was implemented in order to model the behavior in overall ranges from small to large strains, which is based on anisotropic hardening rule and total stress concept. The constitutive model was implemented in ABAQUS code in which large deformation analysis can be performed accurately and efficiently. The formulation includes (1) finite strain plasticity on the basis of Jaumann stress rate, (2) implicit stress integration and (3) consistent tangent moduli. A large deformation analysis was performed with the constitutive model using ABAQUS program. In the analysis of an actual embankment, it was found that the proposed model was formulated accurately and efficiently.

Modified cyclic steel law including bond-slip for analysis of RC structures with plain bars

  • Caprili, Silvia;Mattei, Francesca;Gigliotti, Rosario;Salvatore, Walter
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.187-201
    • /
    • 2018
  • The paper describes a modified cyclic bar model including bond-slip phenomena between steel reinforcing bars and surrounding concrete. The model is focused on plain bar and is useful, for its simplicity, for the seismic analyses of RC structures with plain bars and insufficient constructive details, such as in the case of '60s -'70s Mediterranean buildings. The model is based on an imposed exponential displacements field along the bar including both steel deformation and slip; through the adoption of equilibrium and compatibility equations a stress-slip law can be deducted and simply applied, with opportune operations, to RC numerical models. This study aims to update and complete the original monotonic model published by the authors, solving some numerical inconsistencies and, mostly, introducing the cyclic formulation. The first aim is achieved replacing the imposed linear displacement field along the bar with an exponential too, while the cyclic behaviour is described through a formulation based on the results of parametric analyses concerning a large range of steel and concrete properties and geometric configurations. Validations of the proposed model with experimental results available in the current literature confirm its accuracy and the reduced computational burden, highlighting its suitability in performing nonlinear analyses of RC structures.