• Title/Summary/Keyword: Model construction

Search Result 8,629, Processing Time 0.033 seconds

PRODUCTIVITY PREDICTION MODEL BASED ON PRODUCTIVION INFLUENCING FACTORS: FOCUSED ON FORMWORK OF RESIDENTIAL BUILDING

  • Byungki Kwon;Hyun-soo Lee;Moonseo Park;Hyunsoo Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.58-65
    • /
    • 2011
  • Construction Productivity is one of the most important elements in construction management. It is used in construction process scheduling and cost management, which are significant sector in construction management. It is important to make appropriate schedule and monitor how works are done within schedule. But construction project contains uncertainty and inexactitude, modifying construction schedule is being an issue to manage construction works well. Even though prediction and monitoring of productivity can be principal activity, it is hard to predict productivity with manager's experience and a standard of estimate. A large number of factors influencing productivity, such as drawing, construction method, weather, labor, material, equipment, etc. But current calculation of productivity depends on empirical probability, not consider difference of each influencing factor. In this research, the aim is to present a productivity predicting regression model of form work, which includes effectiveness of influences factors. 5 variables existed inside form work are selected by interview and site research based on literature review of existed various productivity influencing factors. The effectiveness and correlation of productivity influencing factors are analyzed by statistical approach, and it is used to make productivity regression model. The finding of this research will improves monitoring and controlling of project schedule in construction phase.

  • PDF

A Real-Time Graphic Driving Simulator of the Construction Vehicle (건설 차량 실시간 그래픽 주행 시뮬레이터)

  • Son, Kwon;Choi, Kyung-Hyun;You, Chang-Houn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.109-118
    • /
    • 1999
  • A graphic software is one of the most important components of the vehicle simulator. To increase a visual reality of the simulator, the graphic software should require several technologies such as three-dimensional graphics, graphic modeling of the vehicle and the environment, drivers biomechanical models, and real-time data processing. This study presents a real time graphic driving simulator of a construction vehicle. The graphic simulator contains the three models of the construction vehicle, the human, and the environment, and employes a neural network approach to decrease an on-line dynamic computation. An excavator model is represented using an object-oriented paradigm and contains the detailed information about a real-size vehicle. The human model is introduced for objective visual evaluations of the developed excavator model. Since the environment model plays an important role in a real-time simulator, a block-based approach is implemented and a text format is utilized for easier construction of environment. The simulation results are illustrated in order to demonstrate the applicability of developed models and the neural network approach.

  • PDF

An Integrated Expert Model for Delay Management in Construction Projects

  • jalal, Majid Parchami;Yousefi, Elham
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.3
    • /
    • pp.1-14
    • /
    • 2017
  • Delay claim should actually be supported by a set of proper information so that the contractors could prove their validity. The so-called information should be able to clarify the relationship between delay events and how they impact on the whole project. Therefore, exploiting an integrated system by people who are involved in construction business would certainly prove helpful. In the present study, delay analysis methods have been investigated along with selecting a relatively comprehensive method which has been modified, and eventually, a novel model and its required modules have been proposed for evaluating delay claims. The suggested integrated model is formed to identify delayed events, to classify delays, to measure the impacts of delays on the project scheduling, and finally to estimate the damages which were caused by those so-called delays. A decision support system (DSS) model which is related to the integrated system is actually extracted from Iran's general contract conditions, that is, 4311 magazine (equivalent to red FIDIC book). It is then programmed and coded by C# program. This DSS model can be used as an input of Easy Plan program. In addition, at the end of this research, the coded DSS has been used along with the so-called program so that a modified and developed model could be generated.

Development of a Risk Assesment Model for Excavator Work (굴착기 투입 작업의 위험성 평가모델 개발)

  • Kang, Sumin;Ra, Bohyun;Yang, Yejin;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.133-134
    • /
    • 2022
  • Recently, the criteria for assessing industrial accidents have been replaced by the mortality rate. It was found that the number of deaths from excavation work was the highest among construction machinery. The risk assessment is being conducted, however the industrial accident mortality rate has not decreased. Accordingly, this study aims to provide the basic for the create of a risk assessment model specialized in construction work at excavator. It provides absolute value from the risk model which is capable of delivery the probability of a disaster. In addition, we provide a relative risk model that compares the risk through scores between detailed works. The relative risk model is combined by likelihood and severity; the likelihood indicates the frequency of accidents and the severity indicates seriousness of fatal accidents. A variable that reflects the conditions of the construction site was added to the risk assessment model based on past disaster cases. And using the concepts of probability and average, the risk assessment process was quantified and used as an objective indicator. Therefore, the model is expected to reduce disasters by raising the awareness of disasters.

  • PDF

Construction Industry Maturity Model

  • Kwon, Byung-ki;Lee, Hyun-soo;Park, Moonseo;Lee, Kwang-Pyo;Kim, Soo-young
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.445-449
    • /
    • 2015
  • Construction industry is one of the most significant sector in national economic, but the portion of construction has been falling regularly with the regional development. In spite of decrease in economic portion, role of construction industry does not changed irrespective of development, as the foundation of development. To distinguish each state of the maturity, countries are grouped on GDP per capita, than compared with variance of GVA in construction and GFCF per GDP as level of construction industry. GVAc% and GFCF% shows corn-shaped plotting in increase of GDP per capita, and each value converge to around 20% and 5% as GDP per capita increase. The definition of maturity is consist of 4 stages; pre-developing, ascending, stabilization, and maturement. Maturity of construction industry is a term of broad sense of construction industry that is easily to figure current state of regional construction and shows what normal condition of construction is in regional economy.

  • PDF

Influence of Overseas Construction Business on Construction Companies' Financial Stability (해외건설사업이 건설업체 재무적 안정성에 미치는 영향 분석)

  • Cho, Kyu-Su;Lee, Sang-Hyo;Kim, Jae-Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.1
    • /
    • pp.43-51
    • /
    • 2013
  • The changes in business structure of domestic construction companies suggest that there is a close relationship between the volume of overseas project and a company's financial condition. Based on this assumption, this study conducts an empirical analysis on a relationship between overseas project and financial stability of a construction company. The ratio of liquidity and liability was used as liquidity index and stability index respectively. The analysis was based on quarterly time-series data between 2000 and 2010. Two models were constructed for the analysis: Model 1 was based on the liquidity ratio and the amount of domestic and overseas construction project; Model 2 was based on the debt ratio and the amount of domestic and overseas construction project. The analysis results showed that the increasing amount of overseas project facilitated short-term financing with greater liquidity, and yet it was not very effective in lowering the debt ratio. This suggests that the dramatic increase in overseas construction project, which is observed recently, is not entirely an optimistic sign.

Neural Network Model for Construction Cost Prediction of Apartment Projects in Vietnam

  • Luu, Van Truong;Kim, Soo-Yong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.3
    • /
    • pp.139-147
    • /
    • 2009
  • Accurate construction cost estimation in the initial stage of building project plays a key role for project success and for mitigation of disputes. Total construction cost(TCC) estimation of apartment projects in Vietnam has become more important because those projects increasingly rise in quantity with the urbanization and population growth. This paper presents the application of artificial neural networks(ANNs) in estimating TCC of apartment projects. Ninety-one questionnaires were collected to identify input variables. Fourteen data sets of completed apartment projects were obtained and processed for training and generalizing the neural network(NN). MATLAB software was used to train the NN. A program was constructed using Visual C++ in order to apply the neural network to realistic projects. The results suggest that this model is reasonable in predicting TCCs for apartment projects and reinforce the reliability of using neural networks to cost models. Although the proposed model is not validated in a rigorous way, the ANN-based model may be useful for both practitioners and researchers. It facilitates systematic predictions in early phases of construction projects. Practitioners are more proactive in estimating construction costs and making consistent decisions in initial phases of apartment projects. Researchers should benefit from exploring insights into its implementation in the real world. The findings are useful not only to researchers and practitioners in the Vietnam Construction Industry(VCI) but also to participants in other developing countries in South East Asia. Since Korea has emerged as the first largest foreign investor in Vietnam, the results of this study may be also useful to participants in Korea.

INTEGRATED CONSTRUCTION PROJECT PLANNING USING 3D INFORMATION MODELS

  • Chang-Su Shim;Kwang-Myong Lee;Deok-Won Kim;Yoon-Bum Lee;Kyoung-Lae Park
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.928-934
    • /
    • 2009
  • Although the evolution and deployment of information technologies will undoubtedly play an important role in the current construction industry, many engineers are still unsure of the economic value of using these technologies. Especially for the planning of a construction project, a collaboration system to utilize the whole resources is a essential tool for the successful outcome. A detailed, authoritative, and readily accessible information model is needed to enable engineers to make cost-effective decisions among established and innovative plan alternatives. Most engineers rely on limited private experiences when they create solutions or design alternatives. Initial planning is crucial for the success of the construction project. Most construction projects are done through collaboration of engineers who have different specialized knowledge. Information technologies can dramatically enhance the performance of the collaboration. For the information delivery, we need a mediator between engineers. Object-based 3-D models are useful for the communication and decision assistance for the intelligent project design. In this paper, basic guidelines for the 3-D design according to different construction processes are suggested. Adequate interoperability of 3-D objects from any CAD system is essential for the collaboration. Basic architectures of geometry models and their information layer were established to enable interoperability for design checks, estimation and simulation. A typical international project for roadway was chosen for the pilot project. 3-D GIS model was created and bridge information models were created considering several requirements for planning and decision making of the project. From the pilot test, the integrated construction project planning using 3-D information models was discussed and several guidelines were suggested.

  • PDF

AN AUTOMATED FORMWORK MODELING SYSTEM DEVELOPMENT FOR QUANTITY TAKE-OFF BASED ON BIM

  • Seong-Ah Kim;Sangyoon Chin;Su-Won Yoon;Tae-Hong Shin;Yea-Sang Kim;Cheolho Choi
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1113-1116
    • /
    • 2009
  • The attempt to use a 3D model each field such as design, structure, construction, facilities, and estimation in the construction project has recently increased more and more while BIM (Building Information Modeling) that manages the process of generating and managing building data has risen during life cycle of a construction project. While the 2D Drawing based work of each field is achieved in the already existing construction project, the BIM based construction project aims at accomplishing 3D model based work of each field efficiently. Accordingly, the solution that fits 3D model based work of each field and supports plans in order to efficiently accomplish the relevant work is demanded. The estimation, one of the fields of the construction project, has applied BIM to calculate quantity and cost of the building materials used to construction works after taking off building quantity information from the 3D model by a item for a Quantity Take-off grouping the materials relevant to a 3D object. A 3D based estimation program has been commonly used in abroad advanced countries using BIM. The program can only calculate quantity related to one 3D object. In other words, it doesn't support the take-off process considering quantity of a contiguous object. In case of temporary materials used in the frame construction, there are instances where quantity is different by the contiguous object. For example, the formwork of the temporary materials quantity is changed by dimensions of the contiguous object because formwork of temporary materials goes through the quantity take-off process that deduces quantity of the connected object when different objects are connected. A worker can compulsorily adjust quantity so as to recognize the different object connected to the contiguous object and deduces quantity, but it mainly causes the confusion of work because it must complexly consider quantity of other materials related to the object besides. Therefore, this study is to propose the solution that automates the formwork 3D modeling to efficiently accomplish the quantity take-off of formwork by preventing the confusion of the work which is caused by the quantity deduction process between the contiguous object and the connected object.

  • PDF

Development of an Automatic Classification Model for Construction Site Photos with Semantic Analysis based on Korean Construction Specification (표준시방서 기반의 의미론적 분석을 반영한 건설 현장 사진 자동 분류 모델 개발)

  • Park, Min-Geon;Kim, Kyung-Hwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.3
    • /
    • pp.58-67
    • /
    • 2024
  • In the era of the fourth industrial revolution, data plays a vital role in enhancing the productivity of industries. To advance digitalization in the construction industry, which suffers from a lack of available data, this study proposes a model that classifies construction site photos by work types. Unlike traditional image classification models that solely rely on visual data, the model in this study includes semantic analysis of construction work types. This is achieved by extracting the significance of relationships between objects and work types from the standard construction specification. These relationships are then used to enhance the classification process by correlating them with objects detected in photos. This model improves the interpretability and reliability of classification results, offering convenience to field operators in photo categorization tasks. Additionally, the model's practical utility has been validated through integration into a classification program. As a result, this study is expected to contribute to the digitalization of the construction industry.