• Title/Summary/Keyword: Model coil

Search Result 453, Processing Time 0.029 seconds

Implementation of High Accurate Level Sensor System using Pulse Wave Type Magnetostriction Sensor (펄스파 자왜 센서를 이용한 고정밀 액위 센서 시스템의 실현에 관한 연구)

  • Choi, Woo-Jin;Lee, John-Tark
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.395-400
    • /
    • 2013
  • In this paper, we introduce the implementation of high accurate level sensor system using the pulse wave type magnetostriction sensor. When a current pulse flows along the waveguide, the magnetic field also propagates towards the end of waveguide. When this magnetic field just passes the position of the magnet for level detection, the resultant magnetic field by these two magnetic fields makes a torsional reflected signal. This is used to calculate the time difference between a interrogation pulse wave and this torsional reflected signal. The key elements and characteristics were investigated to implement level sensor system based on this principle. We introduce a method to calculate the speed of ultrasonic reflected signal and how to make a model of sensing coil. In particular, we experiment with the characteristics of the torsional reflected signal according to the changes of the interrogation voltage and displacement. To make high accurate level sensor system, two methods were compared. One is to use the comparator and time counter, the other is STFT(Short Time FFT) which is capable of the time-frequency analysis.

Characteristic Study According to the Shape of Field in the Air-cored HTS Synchronous Generator (공심형 HTS 동기발전기의 계자 형상 변화에 따른 특성연구)

  • Jo, Young-Sik;Ahn, Ho-Jin;Hong, Jung-Pyo;Lee, Ju;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.849-851
    • /
    • 2000
  • The value of $I_c$(critical current) in HTS (High Temperature Superconductor) tape has a great influence on $B{\bot}$ (vertical field). Therefore, in shape design of field coil for the HTSG(High Temperature Superconducting Generator), a method to reduce the $B{\bot}$ should be considered in order to maintain the stability and substantial improvement on the performance. On the basis of the magnetic field analysis, this paper deals with various field coil shape to obtain small $B{\bot}$ by using Biot-Savart's law and image method. Moreover the analysis is verified by comparison with experimental results. And also this paper presents the advanced model by using 3D FEM(3 Dimensional Finite Element Method), in which flux density at armature is calculated in 5kVA class HTSG.

  • PDF

Heat Flux Calculation for Thermal Equilibrium of Cofferdam in a LNG Carrier (LNG선 Heating Coil의 설계를 위한 Cofferdam내 열정산)

  • Joo-Ho Heo;Young-Bum Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.98-106
    • /
    • 1998
  • This paper shows the temperature distribution of double hull compartment and of cofferdam in a large LNG Carrier. In LNG Carrier, due to the lower cargo temperature($-163^{\circ}C$), structures are forced to lose their strength if additional heat is not supplied. So it is very important to estimate the temperature distribution and the heat flux needed to maintain the structure properly. The temperature of each compartment is obtained using 2-dimensional model analysis and compared with 3-dimensional results. And also this paper gives preliminary estimation of pipe length to supply necessary heat flux in bare pipe and finned pipe.

  • PDF

Design and Evaluation a Multi-coil Magneto-rheological Damper for Control Vibration of Washing Machine

  • Phu, Do Xuan;Park, Joon Hee;Woo, Jae Kwan;Choi, Seung Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.543-548
    • /
    • 2013
  • This paper presents a design of magnetorheological (MR) damper for control vibration of washing machine. This design is based on the requirements such as small dimensions with high damping force, and minimal consumed energy. The MR damper is designed using the shear mode of MR fluid, and Bingham plastic model is used for optimization process. In this design, a multi-coil design is adopted for damper to enhance damping force and reduce optimally structural parts. In optimization process, ADPL (Ansys Parametric Design Language) program is applied. Base on the optimal parameters, MR damper is manufactured and tested. In evaluation of MR damper, a modified sliding mode control is formulated and applied in both simulation and experiment. Results of experiment show that the MR damper satisfy the requirement of damping force for vibration control of washing machine.

  • PDF

The Development of Vibration Exciter Using Strain Displacement Estimator for Flow Resonance (스트레인 게이지 변위 추정기를 사용한 유동공진 가진기 개발)

  • Choi, Jae-hyuck;Nam, Yoon-su
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.125-132
    • /
    • 2001
  • Heat dissipation technology using flow resonant phenomenon is a kind of new concept in heat transfer area. A vibration exciter is needed to generate air turbulence which has the natural shedding frequency of heat system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator. An analytical dynamic model for this mechanical vibration exciter is presented and its' validity is verified by the comparison with experimental data. Values of some unknown system parameters in the analytic model are estimated through the system identification approach. Based on this mathematical model, the vibration exciter using strain displacement estimator is developed. And in the experiment, the feedback control is used. During the experimental verification phase, it turns out the high modal resonant characteristics of vibrating plate are the major barrier against obtaining a high bandwidth vibration exciter.

  • PDF

Designing a Loudspeaker by Acoutsic Analysis and Taguchi Method (음향해석과 다구치법에 의한 스피커 설계)

  • 김준태;김정호;김진오
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.568-574
    • /
    • 1998
  • A systematic procedure for designing a direct-radiator-type loudspeaker has been developed, based on a numerical vibro-acoustic analysis and the Taguchi method. The finite-element model of the speaker cone has been used to calculate the vibration response of the cone excited by the voice coil. The vibration response of the speaker cone has been used as a boundary condition for the acoustic analysis, and the acoustic frequency characteristics of the loudspeaker have been calculated by the boundary element method. The numerical model has been confirmed by comparing the numerical results with experimental ones obtained in an anechoic chamber. Some design parameters contributing dominantly to the acoustic characteristics have been selected by using the Taguchi method, and the variations of the acoustic characteristics due to the changes of the parameter values have been examined using the numerical model.

  • PDF

Speed of Current Sheath in Pulsed Discharge Plasma Device (펄스형 방전플라스마 장치에서 current sheath의 속력)

  • Choi, Woon Sang;Choi, Ho Seong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.69-74
    • /
    • 2007
  • The axial speed of plasma current sheath was measured with Rogowski coils and compared with the theory of snowplow model. Current sheath speed is measured with $10^6cm/s$. The speed of light gas, $H_2$ and He were similar to the theory of model, but the heavy gas, Ar was not similar to the theory. The disagreement of the heavy gas was guessed as a results of the instability of the current sheath.

  • PDF

An Approximate Calculation Model for Electromagnetic Devices Based on a User-Defined Interpolating Function

  • Ye, Xuerong;Deng, Jie;Wang, Yingqi;Zhai, Guofu
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.378-384
    • /
    • 2014
  • Optimization design and robust design are significant measures for improving the performance and reliability of electromagnetic devices (EMDs, specifically refer to relays, contactors in this paper). However, the implementation of the above-mentioned design requires substantial calculation; consequently, on the premise of guaranteeing precision, how to improve the calculation speed is a problem that needs to be solved. This paper proposes a new method for establishing an approximate model for the EMD. It builds a relationship between the input and output of the EMD with different coil voltages and air gaps, by using a user-defined interpolating function. The coefficient of the fitting function is determined based on a quantum particle swarm optimization (QPSO) method. The effectiveness of the method proposed in this paper is verified by the electromagnetic force calculation results of an electromagnetic relay with permanent magnet.

Dynamic Analysis of HDD Spindle Motor Unit; Cover. Base (HDD 스핀들 모터 유니트 및 커버, 베이스의 동특성 해석)

  • 이성진;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.832-936
    • /
    • 1996
  • In this paper, we study a dynamic characteristics of HDD. HDD is constructed by spindle motor/disk unit, cover, base, E-block arm/suspension unit, and rotary actuator/voice coil motor. First, we make a FE model of spindle motor/disk unit and analyzed natural frequency/mode analytically and experimentally. Especially, the change of natural frequecy of spindle motor unit according to change of B.C is considered. Second, FE model of cover, base is made. Third, we assemble the above three FE mode, we get HEE assembly and dynamic analysis of HDD assembly is accomplished.

  • PDF

A Mathematical and Physical Model for the Design of a Single Stage Coilgun (단일 스테이지 코일건 설계를 위한 수학적 및 물리적 모델)

  • Kim, Ji-Hun;Jeon, Sang-Woon;Kim, Joonyun
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.74-82
    • /
    • 2013
  • This paper deals with a single stage coilgun which is a variety of EML(ElectroMagnetic Launcher) and can be applied to launching a small satellite. We propose a mathematical and physical model in order to design a single stage coilgun and study physical characteristics related to design parameters. A proposed mathematical and physical model is verified by electromagnetic FEM software FEMM 4.2.