IEMEK Journal of Embedded Systems and Applications
/
v.18
no.6
/
pp.285-292
/
2023
With the wide spread of smart farms and the advancements in IoT technology, it is easy to obtain additional data in addition to crop images. Consequently, deep learning-based crop disease diagnosis research utilizing multimodal data has become important. This study proposes a crop disease diagnosis method using multimodal supervised contrastive learning by expanding upon the multimodal self-supervised learning. RandAugment method was used to augment crop image and time series of environment data. These augmented data passed through encoder and projection head for each modality, yielding low-dimensional features. Subsequently, the proposed multimodal supervised contrastive loss helped features from the same class get closer while pushing apart those from different classes. Following this, the pretrained model was fine-tuned for crop disease diagnosis. The visualization of t-SNE result and comparative assessments of crop disease diagnosis performance substantiate that the proposed method has superior performance than multimodal self-supervised learning.
This paper outlines the basic concepts, approaches and research trends of fault diagnosis and fault tolerant control applied to industrial processes, facilities, and motor drives. The main role of fault diagnosis for industrial processes is to create effective indicators to determine the defect status of the process and then take appropriate measures against failures or hazadous accidents. The technologies of fault detection and diagnosis have been developed to determine whether a process has a trend or pattern, or whether a particular process variable is functioning normally. Firstly, data-driven based and model-based techniques were described. Secondly, fault detection and diagnosis techniques for industrial processes are described. Thirdly, passive and active fault tolerant control techniques are considered. Finally, major faults occurring in AC motor drives were listed, described their characteristics and fault diagnosis and fault tolerant control techniques are outlined for this purpose.
The Journal of the Korea institute of electronic communication sciences
/
v.17
no.5
/
pp.809-814
/
2022
ADHD is a disorder showing inattentiveness and hyperactivity. Since symptoms diagnosed in childhood continue to the adulthood, it is important to diagnose ADHD and start treatments in early stages. However, it has the problems to acquire enough and accurate data for the diagnosis because the mental state of children is immature using the self-diagnosis method or the computerized test. In this paper, we present the classification method based on the CNN model and execute experiment using the EEG data to improve the objectiveness and the accuracy of ADHD diagnosis. For the experiment, we build the 3D convolutional networks model and exploit the 5-folds cross validation method. The result shows the 97% accuracy on average.
The Transactions of The Korean Institute of Electrical Engineers
/
v.59
no.10
/
pp.1882-1888
/
2010
It is widely known that ESA(Electric Signature Analysis) method is very useful one for fault diagnosis of an induction motor. Online fault diagnosis system of induction motors using LabVIEW is proposed to detect the fault of broken rotor bars and shorted turns in stator. This system is not model-based system of induction motor but LabVIEW-based fault diagnosis system using FFT spectrum of stator current in faulty motor without estimating of motor parameters. FFT of stator current in faulty induction motor is measured and compared with various reference fault data in data base to diagnose the fault. This paper is focused on to predict and diagnose of the health state of induction motors in steady state. Also, it can be given to motor operator and maintenance team in order to enhance an availability and maintainability of induction motors. Experimental results are demonstrated that the proposed system is very useful to diagnose the fault and to implement the predictive maintenance of induction motors.
The main contribution of this work is the design of a field programmable gate array (FPGA) based ARX-Laguerre proportional-integral observation (PIO) system for fault detection and identification (FDI) in a multi-input, multi-output (MIMO) nonlinear uncertain dynamical robot manipulators. An ARX-Laguerre method was used in this study to dynamic modeling the robot manipulator in the presence of uncertainty and disturbance. To address the challenges of robustness, fault detection, isolation, and estimation the proposed FPGA-based PI observer was applied to the ARX-Laguerre robot model. The effectiveness and accuracy of FPGA based ARX-Laguerre PIO was tested by first three degrees of the freedom PUMA robot manipulator, yielding 6.3%, 10.73%, and 4.23%, average performance improvement for three types of faults (e.g., actuator fault, sensor faults, and composite fault), respectively.
The rapid and correct isolation of faulty submodules (SMs) is of great importance for improving the reliability of modular multilevel converters (MMCs). Therefore, a fast diagnosis method containing fault detection and fault location determination was presented in this paper. An improved incremental predictive model of arm current was proposed to detect failures, and the multi-step prediction method was used to eliminate the negative impact of disturbances. Moreover, a control method was proposed to strengthen the fault characteristics to rapidly locate faulty arms and faulty SMs by detecting the variation rate of the SM capacitor voltage. The proposed method can rapidly and easily locate faulty SMs under different load conditions without the need for additional sensors. The experimental results have validated the effectiveness of the proposed method by using a single-phase MMC with four SMs per arm.
As the number of deteriorated buildings increases, the importance of safety diagnosis, maintenance, and the repair of buildings also increases. Traditionally, building condition assessments are performed by one person or one company and various inspections are needed. This entails a subjective judgment by the inspector, resulting in different assessment results, poor objectivity and a lack of reliability. Therefore, this study proposed a method to bring about accurate grading results of building conditions. The limitations of visual inspection and condition assessment processes previously conducted were identified by reviewing existing studies. Building defect data was collected using the reverse-engineered three-dimensional (3D) model. The accuracy of the results was verified by comparing them with the actual evaluation results. The results show a 50% time-saving to the same area with an accuracy of approximately 90%. Consequently, defect data with high objectivity and reliability were acquired by measuring the length, area, and width. In addition, the proposed method can improve the efficiency of the building diagnosis process.
In recent, there is research to maximize production by preventing failures/accidents in advance through fault diagnosis/prediction and factory automation in the industrial field. Cloud technology for accumulating a large amount of data, big data technology for data processing, and Artificial Intelligence(AI) technology for easy data analysis are promising candidate technologies for accomplishing this. Also, recently, due to the development of fault diagnosis/prediction, the equipment maintenance method is also developing from Time Based Maintenance(TBM), being a method of regularly maintaining equipment, to the TBM of combining Condition Based Maintenance(CBM), being a method of maintenance according to the condition of the equipment. For CBM-based maintenance, it is necessary to define and analyze the condition of the facility. Therefore, we propose a machine learning-based system and data model for diagnosing the fault in this paper. And based on this, we will present a case of predicting the fault occurrence in advance.
This paper presents a fault detection and diagnosis methodologies based on weighted symptom model and pattern matching between the coming fault propagation trend and the simulated one. At the first step, backward chaining is used to find the possible cause candidates for the faults. The weighted symptom model(WSM) is used to generate those candidates. The weight is determined from dynamic simulation. Using WSMs, the methodology can generate the cause candidates and rank them according to the probability. Secondly, the fault propagation trends identified from the partial or complete sequence of measurements are compared to the standard fault propagation trends stored a priori. A pattern matching algorithm based on a number of triangular episodes is used to effectively match those trends. The standard trends have been generated using dynamic simulation and stored a priori. The proposed methodology has been illustrated using two case studies and showed satisfactory diagnostic resolution.
The paper presents functional modelling and its application for diagnosis in nuclear power plants. Functional modelling is defined and its relevance for coping with the complexity of diagnosis in large scale systems like nuclear plants is explained. The diagnosis task is analyzed and it is demonstrated that the levels of abstraction in models for diagnosis must reflect plant knowledge about goals and functions which is represented in functional modelling. Multilevel flow modelling (MFM), which is a method for functional modelling, is introduced briefly and illustrated with a cooling system example. The use of MFM for reasoning about causes and consequences is explained in detail and demonstrated using the reasoning tool, the MFMSuite. MFM applications in nuclear power systems are described by two examples: a PWR; and an FBR reactor. The PWR example show how MFM can be used to model and reason about operating modes. The FBR example illustrates how the modelling development effort can be managed by proper strategies including decomposition and reuse.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.