• Title/Summary/Keyword: Model based diagnosis method

Search Result 369, Processing Time 0.025 seconds

Multimodal Supervised Contrastive Learning for Crop Disease Diagnosis (멀티 모달 지도 대조 학습을 이용한 농작물 병해 진단 예측 방법)

  • Hyunseok Lee;Doyeob Yeo;Gyu-Sung Ham;Kanghan Oh
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.285-292
    • /
    • 2023
  • With the wide spread of smart farms and the advancements in IoT technology, it is easy to obtain additional data in addition to crop images. Consequently, deep learning-based crop disease diagnosis research utilizing multimodal data has become important. This study proposes a crop disease diagnosis method using multimodal supervised contrastive learning by expanding upon the multimodal self-supervised learning. RandAugment method was used to augment crop image and time series of environment data. These augmented data passed through encoder and projection head for each modality, yielding low-dimensional features. Subsequently, the proposed multimodal supervised contrastive loss helped features from the same class get closer while pushing apart those from different classes. Following this, the pretrained model was fine-tuned for crop disease diagnosis. The visualization of t-SNE result and comparative assessments of crop disease diagnosis performance substantiate that the proposed method has superior performance than multimodal self-supervised learning.

An Overview of Fault Diagnosis and Fault Tolerant Control Technologies for Industrial Systems (산업 시스템을 위한 고장 진단 및 고장 허용 제어 기술)

  • Bae, Junhyung
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.548-555
    • /
    • 2021
  • This paper outlines the basic concepts, approaches and research trends of fault diagnosis and fault tolerant control applied to industrial processes, facilities, and motor drives. The main role of fault diagnosis for industrial processes is to create effective indicators to determine the defect status of the process and then take appropriate measures against failures or hazadous accidents. The technologies of fault detection and diagnosis have been developed to determine whether a process has a trend or pattern, or whether a particular process variable is functioning normally. Firstly, data-driven based and model-based techniques were described. Secondly, fault detection and diagnosis techniques for industrial processes are described. Thirdly, passive and active fault tolerant control techniques are considered. Finally, major faults occurring in AC motor drives were listed, described their characteristics and fault diagnosis and fault tolerant control techniques are outlined for this purpose.

The Classification Scheme of ADHD for children based on the CNN Model (CNN 모델 기반의 소아 ADHD 분류 기법)

  • Kim, Do-Hyun;Park, Seung-Min;Kim, Dong-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.809-814
    • /
    • 2022
  • ADHD is a disorder showing inattentiveness and hyperactivity. Since symptoms diagnosed in childhood continue to the adulthood, it is important to diagnose ADHD and start treatments in early stages. However, it has the problems to acquire enough and accurate data for the diagnosis because the mental state of children is immature using the self-diagnosis method or the computerized test. In this paper, we present the classification method based on the CNN model and execute experiment using the EEG data to improve the objectiveness and the accuracy of ADHD diagnosis. For the experiment, we build the 3D convolutional networks model and exploit the 5-folds cross validation method. The result shows the 97% accuracy on average.

Online Fault Diagnosis of Motor Using Electric Signatures (전기신호를 이용한 전동기 온라인 고장진단)

  • Kim, Lark-Kyo;Lim, Jung-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1882-1888
    • /
    • 2010
  • It is widely known that ESA(Electric Signature Analysis) method is very useful one for fault diagnosis of an induction motor. Online fault diagnosis system of induction motors using LabVIEW is proposed to detect the fault of broken rotor bars and shorted turns in stator. This system is not model-based system of induction motor but LabVIEW-based fault diagnosis system using FFT spectrum of stator current in faulty motor without estimating of motor parameters. FFT of stator current in faulty induction motor is measured and compared with various reference fault data in data base to diagnose the fault. This paper is focused on to predict and diagnose of the health state of induction motors in steady state. Also, it can be given to motor operator and maintenance team in order to enhance an availability and maintainability of induction motors. Experimental results are demonstrated that the proposed system is very useful to diagnose the fault and to implement the predictive maintenance of induction motors.

FPGA-based ARX-Laguerre PIO fault diagnosis in robot manipulator

  • Piltan, Farzin;Kim, Jong-Myon
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.99-112
    • /
    • 2018
  • The main contribution of this work is the design of a field programmable gate array (FPGA) based ARX-Laguerre proportional-integral observation (PIO) system for fault detection and identification (FDI) in a multi-input, multi-output (MIMO) nonlinear uncertain dynamical robot manipulators. An ARX-Laguerre method was used in this study to dynamic modeling the robot manipulator in the presence of uncertainty and disturbance. To address the challenges of robustness, fault detection, isolation, and estimation the proposed FPGA-based PI observer was applied to the ARX-Laguerre robot model. The effectiveness and accuracy of FPGA based ARX-Laguerre PIO was tested by first three degrees of the freedom PUMA robot manipulator, yielding 6.3%, 10.73%, and 4.23%, average performance improvement for three types of faults (e.g., actuator fault, sensor faults, and composite fault), respectively.

Fast Diagnosis Method for Submodule Failures in MMCs Based on Improved Incremental Predictive Model of Arm Current

  • Xu, Kunshan;Xie, Shaojun
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1608-1617
    • /
    • 2018
  • The rapid and correct isolation of faulty submodules (SMs) is of great importance for improving the reliability of modular multilevel converters (MMCs). Therefore, a fast diagnosis method containing fault detection and fault location determination was presented in this paper. An improved incremental predictive model of arm current was proposed to detect failures, and the multi-step prediction method was used to eliminate the negative impact of disturbances. Moreover, a control method was proposed to strengthen the fault characteristics to rapidly locate faulty arms and faulty SMs by detecting the variation rate of the SM capacitor voltage. The proposed method can rapidly and easily locate faulty SMs under different load conditions without the need for additional sensors. The experimental results have validated the effectiveness of the proposed method by using a single-phase MMC with four SMs per arm.

Safety diagnosis process for deteriorated buildings using a 3D scan-based reverse engineering model

  • Jae-Min Lee;Seungho Kim;Sangyong Kim
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.79-88
    • /
    • 2023
  • As the number of deteriorated buildings increases, the importance of safety diagnosis, maintenance, and the repair of buildings also increases. Traditionally, building condition assessments are performed by one person or one company and various inspections are needed. This entails a subjective judgment by the inspector, resulting in different assessment results, poor objectivity and a lack of reliability. Therefore, this study proposed a method to bring about accurate grading results of building conditions. The limitations of visual inspection and condition assessment processes previously conducted were identified by reviewing existing studies. Building defect data was collected using the reverse-engineered three-dimensional (3D) model. The accuracy of the results was verified by comparing them with the actual evaluation results. The results show a 50% time-saving to the same area with an accuracy of approximately 90%. Consequently, defect data with high objectivity and reliability were acquired by measuring the length, area, and width. In addition, the proposed method can improve the efficiency of the building diagnosis process.

A Predictive System for Equipment Fault Diagnosis based on Machine Learning in Smart Factory (스마트 팩토리에서 머신 러닝 기반 설비 장애진단 예측 시스템)

  • Chow, Jaehyung;Lee, Jaeoh
    • KNOM Review
    • /
    • v.24 no.1
    • /
    • pp.13-19
    • /
    • 2021
  • In recent, there is research to maximize production by preventing failures/accidents in advance through fault diagnosis/prediction and factory automation in the industrial field. Cloud technology for accumulating a large amount of data, big data technology for data processing, and Artificial Intelligence(AI) technology for easy data analysis are promising candidate technologies for accomplishing this. Also, recently, due to the development of fault diagnosis/prediction, the equipment maintenance method is also developing from Time Based Maintenance(TBM), being a method of regularly maintaining equipment, to the TBM of combining Condition Based Maintenance(CBM), being a method of maintenance according to the condition of the equipment. For CBM-based maintenance, it is necessary to define and analyze the condition of the facility. Therefore, we propose a machine learning-based system and data model for diagnosing the fault in this paper. And based on this, we will present a case of predicting the fault occurrence in advance.

A study on fault diagnosis for chemical processes using hybrid approach of quantitative and qualitative method (정성적, 정량적 기법의 혼합 전략을 통한 화학공정의 이상진단에 관한 연구)

  • 오영석;윤종한;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.714-717
    • /
    • 1996
  • This paper presents a fault detection and diagnosis methodologies based on weighted symptom model and pattern matching between the coming fault propagation trend and the simulated one. At the first step, backward chaining is used to find the possible cause candidates for the faults. The weighted symptom model(WSM) is used to generate those candidates. The weight is determined from dynamic simulation. Using WSMs, the methodology can generate the cause candidates and rank them according to the probability. Secondly, the fault propagation trends identified from the partial or complete sequence of measurements are compared to the standard fault propagation trends stored a priori. A pattern matching algorithm based on a number of triangular episodes is used to effectively match those trends. The standard trends have been generated using dynamic simulation and stored a priori. The proposed methodology has been illustrated using two case studies and showed satisfactory diagnostic resolution.

  • PDF

FUNCTIONAL MODELLING FOR FAULT DIAGNOSIS AND ITS APPLICATION FOR NPP

  • Lind, Morten;Zhang, Xinxin
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.753-772
    • /
    • 2014
  • The paper presents functional modelling and its application for diagnosis in nuclear power plants. Functional modelling is defined and its relevance for coping with the complexity of diagnosis in large scale systems like nuclear plants is explained. The diagnosis task is analyzed and it is demonstrated that the levels of abstraction in models for diagnosis must reflect plant knowledge about goals and functions which is represented in functional modelling. Multilevel flow modelling (MFM), which is a method for functional modelling, is introduced briefly and illustrated with a cooling system example. The use of MFM for reasoning about causes and consequences is explained in detail and demonstrated using the reasoning tool, the MFMSuite. MFM applications in nuclear power systems are described by two examples: a PWR; and an FBR reactor. The PWR example show how MFM can be used to model and reason about operating modes. The FBR example illustrates how the modelling development effort can be managed by proper strategies including decomposition and reuse.