• Title/Summary/Keyword: Model based diagnosis method

Search Result 369, Processing Time 0.024 seconds

Fault Diagnosis of an Electric Tool using Automaton (거동 반응을 이용한 전동공구 고장진단)

  • Lee, Seung-Mock;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1328-1333
    • /
    • 2006
  • For fault diagnosis of machines and equipments, knowledge-based method has been used widely but has some limitations for complex systems. These can be covered by model-based method. As one kind of model-based method, Qualitative modeling diagnosis method is developed in this research. The developed method uses output signal only. In this method quantization of the output signal mattes automata which can characterize the flow of the signal pattern to normal and fault respectively. As an example of the qualitative diagnosis method, an electric tool which has faults at gear and bearing were examined in this research. The result shows that the developed method can diagnose the fault clearly for the two fault cases.

  • PDF

A Fault Diagnosis Method of Oil-Filled Power Transformers Using IEC Code based Neuro-Fuzzy Model (IEC 코드 기반의 뉴로-퍼지모델을 이용한 유입변압기 고장진단 기법)

  • Seo, Myeong-Seok;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • It has been proven that the dissolved gas analysis (DGA) is the most effective and convenient method to diagnose the transformers. The DGA is a simple, inexpensive, and non intrusive technique. Among the various diagnosis methods, IEC 60599 has been widely used in transformer in service. But this method cannot offer accurate diagnosis for all the faults. This paper proposes a fault diagnosis method of oil-filled power transformers using IEC code based neuro-fuzzy model. The proposed method proceeds two steps. First, IEC 60599 method is applied to diagnosis. If IEC code can't determine the fault type, neuro-fuzzy model is applied to effectively classify the fault type. To demonstrate the validity of the proposed method, experiment is performed and its results are illustrated.

Fault diagnosis based on likelihood decomposition

  • Uosaki, Katsuji;Kagawa, Tetsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.272-275
    • /
    • 1992
  • A novel fault diagnosis method based on likelihood decomposition is proposed for linear stochastic systems described by autoregressive (AR) model. Assuming that at some time instant .tau. the fault of one of the following two types is occurs: innovation fault (actuator fault); and observation fault (sensor fault), the log-likelihood function is decomposed into two components based on the observations before and after .tau., respectively, Then, the type of the fault is determined by comparing the log-likelihoods corresponding two types of faults. Numerical examples demonstrate the usefulness of the proposed diagnosis method.

  • PDF

Model-based Fault Diagnosis Using Quantized Vibration Signals (양자화된 진동신호를 이용한 모델기반 고장진단)

  • Kim, Do-Hyun;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.279-284
    • /
    • 2005
  • Knowledge based fault diagnosis has a limitation in determining the cause and scheme for the fault, because it detects faults from signal pattern only Therefore, model-based fault diagnosis is requested to determine the fault by analyzing output of the equipment from its dynamic model. This research shows a method how to devise the automaton of system as a model for normal and faulty condition through the reduction of handling data by quantization of vibration signals and the example which is concerning to the bearing of ATM. The developed model based fault diagnosis was applied to detect the faulty bearing of ATM, which results.

  • PDF

Multiple-Fault Diagnosis for Chemical Processes Based on Signed Digraph and Dynamic Partial Least Squares (부호유향그래프와 동적 부분최소자승법에 기반한 화학공정의 다중이상진단)

  • 이기백;신동일;윤인섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.159-167
    • /
    • 2003
  • This study suggests the hybrid fault diagnosis method of signed digraph (SDG) and partial least squares (PLS). SDG offers a simple and graphical representation for the causal relationships between process variables. The proposed method is based on SDG to utilize the advantage that the model building needs less information than other methods and can be performed automatically. PLS model is built on local cause-effect relationships of each variable in SDG. In addition to the current values of cause variables, the past values of cause and effect variables are inputted to PLS model to represent the Process armies. The measured value and predicted one by dynamic PLS are compared to diagnose the fault. The diagnosis example of CSTR shows the proposed method improves diagnosis resolution and facilitates diagnosis of masked multiple-fault.

A process diagnosis method for membrane water treatment plant using a constant flux membrane fouling model (정유량 막여과 파울링 모델을 이용한 막여과 정수 플랜트 공정 진단 기법)

  • Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.139-146
    • /
    • 2013
  • A process diagnosis method for membrane water treatment plant was developed using a constant flux membrane fouling model. This diagnosis method can be applied to a real-field membrane-based water treatment plant as an early alarming system for membrane fouling. The constant flux membrane fouling model was based on the simplest equation form to describe change in trans-membrane pressure (TMP) during the filtration cycle from a literature. The model was verified using a pilot-scale microfiltraton (MF) plant with two commercial MF membrane modules (72 m2 of membrane area). The predicted TMP data were produced using the model, where the modeling parameters were obtained by the least square method using the early plant data and modeling equations. The diagnosis was carried out by comparing the predicted TMP data (as baseline) and real plant data. As a result of the case study, the diagnsis method worked pretty well to predict the early points where fouling started to occur.

The Development of a Fault Diagnosis Model based on the Parameter Estimations of Partial Least Square Models (부분최소제곱법 모델의 파라미터 추정을 이용한 화학공정의 이상진단 모델 개발)

  • Lee, Kwang Oh;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.59-67
    • /
    • 2019
  • Since it is really hard to construct process models based on prior process knowledges, various statistical approaches have been employed to build fault diagnosis models. However, the crucial drawback of these approaches is that the solutions may vary according to the fault magnitude, even if the same fault occurs. In this study, the parameter monitoring approach is suggested. When a fault occurs in a chemical process, this leads to trigger the change of a process model and the monitoring parameters of process models is able to provide the efficient fault diagnosis model. A few important variables are selected and their predictive models are constructed by partial least square (PLS) method. The Euclidean norms of parameters of PLS models are estimated and a fault diagnosis can be performed as comparing with parameters of PLS models based on normal operational conditions. To improve the monitoring performance, cumulative summation (CUSUM) control chart is employed and the changes of model parameters are recorded to identify the type of an unknown fault. To verify the efficacy of the proposed model, Tennessee Eastman (TE) process is tested and this model can be easily applied to other complex processes.

Fault Diagnosis Method based on Feature Residual Values for Industrial Rotor Machines

  • Kim, Donghwan;Kim, Younhwan;Jung, Joon-Ha;Sohn, Seokman
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.89-99
    • /
    • 2018
  • Downtime and malfunction of industrial rotor machines represents a crucial cost burden and productivity loss. Fault diagnosis of this equipment has recently been carried out to detect their fault(s) and cause(s) by using fault classification methods. However, these methods are of limited use in detecting rotor faults because of their hypersensitivity to unexpected and different equipment conditions individually. These limitations tend to affect the accuracy of fault classification since fault-related features calculated from vibration signal are moved to other regions or changed. To improve the limited diagnosis accuracy of existing methods, we propose a new approach for fault diagnosis of rotor machines based on the model generated by supervised learning. Our work is based on feature residual values from vibration signals as fault indices. Our diagnostic model is a robust and flexible process that, once learned from historical data only one time, allows it to apply to different target systems without optimization of algorithms. The performance of the proposed method was evaluated by comparing its results with conventional methods for fault diagnosis of rotor machines. The experimental results show that the proposed method can be used to achieve better fault diagnosis, even when applied to systems with different normal-state signals, scales, and structures, without tuning or the use of a complementary algorithm. The effectiveness of the method was assessed by simulation using various rotor machine models.

Model-based Fault Diagnosis Applied to Vibration Data (진동데이터 적용 모델기반 이상진단)

  • Yang, Ji-Hyuk;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1090-1095
    • /
    • 2012
  • In this paper, we propose a model-based fault diagnosis method applied to vibration data. The fault detection is performed by comparing estimated parameters with normal parameters and deciding if the observed changes can be explained satisfactorily in terms of noise or undermodelling. The key feature of this method is that it accounts for the effects of noise and model mismatch. And we aslo design a classifier for the fault isolation by applying the multiclass SVM (Support Vector Machine) to the estimated parameters. The proposed fault detection and isolation methods are applied to an engine vibration data to show a good performance. The proposed fault detection method is compared with a signal-based fault detection method through a performance analysis.

Fault Diagnosis of a Refrigeration System Based on Petri Net Model (페트리네트 모델을 이용한 냉동시스템의 고장 진단)

  • Jeong, S.K.;Yoon, J.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.187-193
    • /
    • 2005
  • In this paper, we proposes a man-machine interface design for fault diagnosis system with inter-node search method in a Petri net model. First, complicated fault cases are modeled as the Petri net graph expressions. Next, to find out causes of the faults on which we focus, a Petri net model is analyzed using the backward reasoning of transition-invariance in the Petri net. In this step, the inter-node search method algorithm is applied to the Petri net model for reducing the range of sources in faults. Finally, the proposed method is applied to a fault diagnosis of a refrigeration system to confirm the validity of the proposed method.

  • PDF