• Title/Summary/Keyword: Model based control system design

Search Result 1,484, Processing Time 0.037 seconds

A Study to Generate a Theory of Coordination for Intelligent Agent Societies (지능형 에이전트 집단을 위한 조정 이론 생성에 관한 연구)

  • Kim, Eun-Gyung
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.147-154
    • /
    • 2002
  • In bulding Intelligent Agent Societies (IAS), it is very important to design and implement coordination in accordance with the known requirement and anticipated working conditions. Coordination consists of a set of mechanisms necessary for the effective operation of IAS. Currently, there is little theoretical support that could help in this research is to generate an empirically-based solving systems in which all agent share an identical goal structure and fully cooperate. And we developed a simulation model called "P-System" which produces basic data to be used for statistical analysis to generate a theory of coordination. Coordination among agent in the P-System is dependent on 23 control variables calld TEs(tweakable emtities.)And the level of coordination is represennted by an independent variabe called QMC (Quality Measure Coordination) expressed in numerical terms according tn the definiion of this study. Also, we have studied how to select unbiased subset from the huge total experimental space of the P-System and how to decide the scale of the subset.

Design of Trajectory Following Controller for Parafoil Airdrop System (패러포일 투하 시스템의 궤적 추종 제어기의 설계)

  • Yang, Bin;Choi, Sun-Young;Lee, Joung-Tae;Lim, Dong-Keun;Hwang, Chung-Won;Park, Seung-Yub
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.215-222
    • /
    • 2014
  • In this paper, parafoil airdrop system has been designed and analyzed. 6-degrees of freedom (6-DOF) model of the parafoil system is set up. Nonlinear model predictive control (NMPC) and Proportion integration differentiation (PID) methods were separately applied to adjust the flap yaw angle. Compared the results of setting time and overshoot time of yaw angle, it is found that the of yaw angle is more stable by using PID method. Then, trajectory following controller was designed based on the simulation results of trajectory following effects, which was carried out by using MATLAB. The lateral offset error of parafoil trajectory can be eliminated by its lateral deviation control. The later offset deviation reference was obtained by the interpolation of the current planning path. Moreover, using the designed trajectory, the trajectory following system was simulated by adding the wind disturbances. It is found that the simulation result is highly agreed with the designed trajectory, which means that wind disturbances have been eliminated with the change of yaw angle controlled by PID method.

Development of Backward Safety Analysis Tool for CPN Models (CPN 모델의 역방향 안전성 분석 도구 개발)

  • Lee, U-Jin;Chae, Heung-Seok;Cha, Seong-Deok;Lee, Jang-Su;Gwon, Yong-Rae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.4
    • /
    • pp.457-466
    • /
    • 1999
  • 원자력 발전소 계측 제어 시스템, 의료 관련 시스템, 항공 관련 시스템 등 실생활과 밀접한 시스템에 소프트웨어의 사용이 점차 증가하고 있다. 이러한 시스템에서 소프트웨어의 오류는 예기치 않는 사고를 유발하여 인명, 재산상의 심각한 타격을 줄 수 있다. 그러므로 고신뢰도 소프트웨어의 개발 시에는 반드시 시스템의 안전성을 보장해 주어야 한다. 역방향 안전성 분석 방법은 시스템의 안전성을 분석하는 한가지 방법으로서 시스템의 위험 상태를 정의하고 그 위험의 원인들을 추적, 분석함으로써 안전성에 대한 효율적인 분석을 수행할 수 있는 장점을 갖는다. 이 논문에서는 소프트웨어 개발 초기 단계에서 안전성을 분석할 수 있는 방법으로 Colored Petri Nets(CPN)에 기반을 둔 역방향 안전성 분석 방법을 제시한다. 또한 CPN 역방향 안전성 분석 도구인 SAC(Safety Analyzer for CPN)의 설계 및 구현에 대해 언급한다. SAC은 기존의 상용 CPN 모델링 도구인 Design/CPN과 연계하여 사용될 수 있으므로 CPN으로 모델링된 시스템의 안전성을 분석할 수 있다는 장점이 있다. 이 논문에서는 예제로 자동 교통 제어 시스템의 일부를 CPN으로 모델링하고 SAC을 이용한 분석 과정을 기술한다.Abstract In safety-critical systems such as nuclear power plants, medical machines, and avionic systems which are closely related with our livings, the usage of software in the controlling part is growing rapidly. Since software errors in safety-critical systems may cause serious accidents leading to financial or human damages, system safety should be ensured during and after development of a system. A backward safety analysis technique defines system hazards and tries to trace their causes by analyzing system states backward. In this paper, we provide a backward safety analysis technique based on Colored Petri Nets(CPN), which is applicable to the early software development phase. Also Safety Analyzer for CPN(SAC), the supporting tool, is designed and implemented. Since SAC is compatible with Design/CPN, a commercial tool for supporting CPN, it can be applicable to analyze safety in practical problems. As an example, we model a part of the traffic light control system using CPN and analyze safety properties of the model using the SAC tool.

Parametric Sensitivity Analyses of Linear System relative to the Characteristic Ratios of Coefficient (I) : A General Case (계수의 특성비에 대한 선형계의 파라미터적 감도해석(I): 일반적인 경우)

  • 김영철;김근식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.205-215
    • /
    • 2004
  • The characteristic ratio assignment (CRA) method〔1〕 is new polynomial approach which allows to directly address the transient responses such as overshoot and speed of response time in time domain specifications. The method is based on the relationships between time response and characteristic ratios($\alpha_i$ ) and generalized time constant (T), which are defined in terms of coefficients of characteristic polynomial. However, even though the CRA can apply to developing a linear controller that meets good transient responses, there are still some fundamental questions to be explored. For the purpose of this, we have analyzed several sensitivities of a linear system with respect to the changes of coefficients itself and $\alpha_i$ of denominator polynomial. They are (i) the unnormalized root sensitivity : to determine how the poles change as $\alpha_i$ changes, and (ii) the function sensitivity to determine the sensitivity of step response to the change of o, and to analyze the sensitivity of frequency response as o, changes. As an other important result, it is shown that, under any fixed T and coefficient of the lowest order of s in denominator, the step response is dominantly affected merely by $\alpha_1, alpha_2 and alpha_3$ regardless of the order of denominator higher than 4. This means that the rest of the$\alpha_i$ s have little effect on the step response. These results provide some useful insight and background theory when we select $\alpha_i$ and T to compose a reference model, and in particular when we design a low order controllers such as PID controller.

Kinematic analysis of rowing exercise using a motor-assisted rowing machine for rowers with spinal cord injury: a case report

  • Jeong, Ju Ri;Lee, Bum Suk;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.69-75
    • /
    • 2014
  • Objective: We developed a Motor-Assisted Rowing Machine (MARM) for Spinal Cord Injury (SCI), by modification of the Concept II rowing machine, so that the seats could be operated automatically in a backward and forward direction by a motor. Design: Case report. Methods: Motor rowing consisted of a chair with inclination control, a motor system, control button, monitor, program, leg supporter, safety belt, and seat. The patients were 2 men rowing athletes with SCI, classified as American Spinal Injury Association class B, participated in the study. Level of thoracic injury ranged from T8 to T10. The subjects rowed at a self-selected stroke rate with 50 watts. Two different rowing methods (static rowing without movement of the seat, dynamic rowing using MARM) were assigned to each participant during 10 minutes; 34 reflective markers were attached to their full bodies. Kinematic data were collected using the Vicon motion analysis system. Based on the full body model provided as a default by the equipment. In the rowing exercise, the rowing motions were divided into Drive Phase and Recovery Phase. Results: The two rowing methods differ in handle range, seat range, handle and seat ratio, handle velocity, and seat velocity during static and dynamic rowing. The rowing exercise using a rowing machine developed MARM increased tendency to the range of motion in the dynamic method compared to the static method. Conclusions: The newly developed MARM could be a useful whole body exercise for people with SCI.

The Effect of Asset Specificity, Information Sharing, and a Collaborative Environment on Supply Chain Management (SCM): An Integrated SCM Performance Formation Model (자산전용성과 협업환경하에서의 정보공유가 공급사슬에 미치는 영향 : 통합적 SCM 성과형성 모델)

  • Kim, Tae-Ryong;Song, Jang-Gwen
    • Journal of Distribution Science
    • /
    • v.11 no.4
    • /
    • pp.51-60
    • /
    • 2013
  • Purpose - The objective of this paper is to investigate the effect of asset specificity, the level of information sharing, the importance of information sharing, and an integrated collaborative environment on supply chain performance. Research design, data, and methodology - Data collection was implemented as follows: questionnaires were distributed to 250 companies that have business ties with Halla Climate Control Corporation. The empirical study to test our hypothesis was based on statistical analysis (using SPSS 18.0 and AMOS 18.0). The hypothesis of this paper is that the asset specificity variable has positive effects on the following variables: Level of information sharing, the importance of information sharing, and integrated collaborative environment. Moreover the variables, the level of information sharing, and the importance of information sharing are strongly influenced by the variable integrated collaborative environment, and these when combined, have an effect on the dependent variable, supply chain performance. We tested our hypothesized model utilizing path analysis with latent variables. Results - According to the results of our analysis, hypothesis H1, which tests whether there is a relationship between asset specificity and the integrated collaborative environment, is supported at the 0.01 level. Hypotheses H2 and H3 were also confirmed, and asset specificity had positive effects (+) on the level of information sharing variable. The importance of the information sharing variable was statistically significant at the 0.01 level. Hypotheses H4 and H5 posited that the integrated collaborative environment variable would have a positive effect on the level of information sharing; the importance of information sharing variable was strongly supported statistically, with a significant p-value below. Moreover, the level of information sharing (H6), and the importance of information sharing (H7) variables also had a statistically relevant influence on supply chain performance. As a result, existence of a collaborative system between companies would influence supply chain performance by strengthening real-time information access and information sharing. Thus, it is important to construct a collaborative environment where information sharing among companies and cooperation is possible. Conclusions - First, with rapid changes in the business environment, it becomes necessary for enterprises to acquire the right information in order to properly implement SCM. For successful SCM, firms should understand the importance of collaboration with supply chain partners and an internally built collaboration system, which in turn will better promote a partnership commitment with suppliers as well as collaborative integration with buyers. A collaborative system, as we suggest in this paper, facilitates the maintenance of a long-term relationship of trust, and can help reinforce information sharing. Second, it is necessary to increase information sharing over time via a collaborative system so that employees of the suppliers become aware of the system. The more proactive and positive attitudes are towards such a collaborative system by the managerial group, the higher the level of information sharing will be among the users. Successful SCM performance is achieved by information sharing through a collaborative environment rather than by investing only in setting up an information system.

  • PDF

Along and across-wind vibration control of shear wall-frame buildings with flexible base by using passive dynamic absorbers

  • Ivan F. Huergo;Hugo Hernandez-Barrios;Roberto Gomez-Martinez
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.15-42
    • /
    • 2024
  • A flexible-base coupled-two-beam (CTB) discrete model with equivalent tuned mass dampers is used to assess the effect of soil-structure interaction (SSI) and different types of lateral resisting systems on the design of passive dynamic absorbers (PDAs) under the action of along-wind and across-wind loads due to vortex shedding. A total of five different PDAs are considered in this study: (1) tuned mass damper (TMD), (2) circular tuned sloshing damper (C-TSD), (3) rectangular tuned sloshing damper (R-TSD), (4) two-way liquid damper (TWLD) and (5) pendulum tuned mass damper (PTMD). By modifying the non-dimensional lateral stiffness ratio, the CTB model can consider lateral deformations varying from those of a flexural cantilever beam to those of a shear cantilever beam. The Monte Carlo simulation method was used to generate along-wind and across-wind loads correlated along the height of a real shear wall-frame building, which has similar fundamental periods of vibration and different modes of lateral deformation in the xz and yz planes, respectively. Ambient vibration tests were conducted on the building to identify its real lateral behavior and thus choose the most suitable parameters for the CTB model. Both alongwind and across-wind responses of the 144-meter-tall building were computed considering four soil types (hard rock, dense soil, stiff soil and soft soil) and a single PDA on its top, that is, 96 time-history analyses were carried out to assess the effect of SSI and lateral resisting system on the PDAs design. Based on the parametric analyses, the response significantly increases as the soil flexibility increases for both type of lateral wind loads, particularly for flexural-type deformations. The results show a great effectiveness of PDAs in controlling across-wind peak displacements and both along-wind and across-wind RMS accelerations, on the contrary, PDAs were ineffective in controlling along-wind peak displacements on all soil types and different kind of lateral deformation. Generally speaking, the maximum possible value of the PDA mass efficiency index increases as the soil flexibility increases, on the contrary, it decreases as the non-dimensional lateral stiffness ratio of the building increases; therefore, there is a significant increase of the vibration control effectiveness of PDAs for lateral flexural-type deformations on soft soils.

Design and Implementation of Permission Delegation in Role-Based Access Control Model (권한의 위임을 위한 역할-기반 접근 제어 모델의 설계 및 구현)

  • 나상엽
    • Convergence Security Journal
    • /
    • v.3 no.2
    • /
    • pp.1-10
    • /
    • 2003
  • In the distributed-computing environment, applications or users have to share resources and communicate with each other in order to perform their jobs more efficiently. In this case, it is important to keep resources and information integrity from the unexpected use by the unauthorized user. Therefore, there is a steady increase in need for a reasonable way to authentication and access control of distributed-shared resources. In RBAC, there are role hierarchies in which a higher case role can perform permissions of a lower case role. No vise versa. Actually, however, it is necessary for a lower case role to perform a higher case role's permission, which is not allowed to a lower case role basically. In this paper, we will propose a permission delegation method, which is a permission delegation server, and a permission delegation protocols with the secret key system. As the result of a permission delegation, junior roles can perform senior role's permissions or senior role itself on the exceptional condition in a dedicated interval.

  • PDF

μ-Synthesis Controller Design and Experimental Verification for a Seismic-excited MDOF Building (지진을 받는 다자유도 건물의 μ합성 제어기 설계 및 검증실험)

  • 민경원;주석준;이영철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.41-48
    • /
    • 2002
  • This study is on the structural control experiment for a small scale three-story building structure employing on active mass damper subjected to earthquake loading. $\mu$-synthesis controllers, which belong to robust control strategies, were designed and their performance were experimentally verified. Frequency-dependent weighting functions corresponding to disturbance input and controlled output were defined and combined to produce optimal $\mu$-synthesis controllers. The experiment result shows 60-70% reduction in RMS responses under the band-limited white noise excitation and 30-45% reduction in peak responses under the scaled earthquake excitations. Good agreement was obtained between the simulations based on the identified mathematical model and experimental results. And the simulations for the system with uncertainties show that the designed controllers are robust within a specified range of uncertainties.

A NUMERICAL STUDY ON THERMAL DESIGN OF A LARGE-AREA HOT PLATE FOR THERMAL NANOIMPRINT LITHOGRAPHY (나노임프린트 장비용 대면적 열판 열설계를 위한 수치 연구)

  • Park, G.J.;Lee, J.J.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.90-98
    • /
    • 2016
  • A numerical study is conducted on thermal performance of a large-area hot plate specially designed as a heating and cooling tool for thermal nanoimprint lithography process. The hot plate has a dimension of $240mm{\times}240mm{\times}20mm$, in which a series of cartridge heaters and cooling holes are installed. The material is stainless steel selected for enduring the high molding pressure. A numerical model based on the ANSYS Fluent is employed to predict the thermal behavior of the hot plate both in heating and cooling phases. The PID thermal control of the device is modeled by adding user defined functions. The results of numerical computation demonstrate that the use of cartridge heaters provides sufficient heat-up performance and the active liquid cooling in the cooling holes provides the required cool-down performance. However, a crucial technical issue is raised that the proposed design poses a large temperature non-uniformity in the steady heating phase and in the transient cooling phase. As a remedy, a new hot plate in which heat pipes are installed in the cooling holes is considered. The numerical results show that the installation of heat pipes could enhance the temperature uniformity both in the heating and cooling phases.