• Title/Summary/Keyword: Model based control system design

Search Result 1,484, Processing Time 0.031 seconds

A Study for Controllability, Stability by Optimal Control of Load and Angular Velocity of Flying Objects using the Spiral Predictive Model(SPM) (나선 예측 모델에서의 비행체 하중수 및 각속도 최적 제어에 의한 제어성과 안정성 성능에 관한 연구)

  • Wang, Hyun-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.268-272
    • /
    • 2007
  • These days many scientists make studies of feedback control system for stability on non-linear state and for the maneuver of flying objects. These feedback control systems have to satisfy trajectory condition and angular conditions, that is to say, controllability and stability simultaneously to achieve mission. In this paper, a design methods using model based control system which consists of spiral predictive model, Q-function included into generalized-work function is shown. It is made a clear that the proposed algorithm using SPM maneuvers for controllability and stability at the same time is successful in attaining our purpose. The feature of the proposed algorithm is illustrated by simulation results. As a conclusion, the proposed algorithm is useful for the control of moving objects.

A Role-Based Access Control System API Supporting External Authority Interface

  • Ma, Jin;Kim, Hyunah;Park, Minjae
    • Journal of Internet Computing and Services
    • /
    • v.19 no.2
    • /
    • pp.27-32
    • /
    • 2018
  • In industries that are operating various enterprise systems, new systems are integrated and operated in accordance with each period. In particular, when a new system is to be integrated, one of the major considerations is the single sign-on part for integrating and operating the authentication. To implement this authority system using role-based access control method, an extension method for access control method is needed. Therefore, in this paper, we design an extended role-based access control model for interworking with legacy authority system and provide its APIs. The extended role-based access control model is a model in which external authority information, which holds authority information in the authority information, is added. And we describe operations that the REST Web APIs are based on these models. In this paper, the method is described in the back-end APIs and can be implemented as an operation of an extended role-based access control system based on the method.

Model Based Control System Design of Two Wheeled Inverted Pendulum Robot (이륜 도립진자 로봇의 모델 기반 제어 시스템 설계)

  • Ku, Dae-Kwan;Ji, Jun-Keun;Cha, Guee-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.162-172
    • /
    • 2011
  • This paper proposes embedded System of two wheeled inverted pendulum robot designed by model based design method, using MATLAB/SIMULINK and LEGO NXT Mindstorms. At first, stability and performance of controller is verified through modeling and simulation. After that direct conversion from simulation model to C code is carried and effectiveness of controller is experimentally verified. Two wheeled inverted pendulum robot has basic function about autonomous balancing control using principle of inverted pedulum and it is also possible to arrive at destination. In this paper, state feedback controller designed by quadratic optimal control method is used. And quadratic optimal control uses state feedback control gain K to minimize performance index function J. Because it is easy to find gain, this control method can be used in the controller of two wheeled inverted pendulum robot. This proposed robot system is experimentally verified with following performances - balancing control, disturbance rejection, remote control, line following and obstacle avoidance.

Descriptor Type Linear Parameter Dependent System Modeling And Control of Lagrange Dynamics

  • Kang, Jin-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.444-448
    • /
    • 2003
  • In this paper, the Lagrange dynamics is studied. A state space representation of Lagrange dynamics and control algorithm based on the state feedback pole placement are presented. The state space model presented is descriptor type linear parameter dependent system. It is shown that the control algorithms based on the linear system theory can be applicable to the state space representation of Lagrange dynamics. To show that the linear system theory can be applicable to the state space representation of Lagrange dynamics, the LMI based regional pole-placement design algorithm is developed and present two examples.

  • PDF

Design of Quantitative Feedback Control System for the Three Axes Hydraulic Road Simulator (3축 유압 도로 시뮬레이터의 정량적 피드백 제어 시스템 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.280-289
    • /
    • 2008
  • This paper presents design of the quantitative feedback control system of the three axes hydraulic road simulator with respect to the dummy wheel for uncertain multiple input-output(MIMO) feedback systems. This simulator has the uncertain parameters such as fluid compressibility, fluid leakage, electrical servo components and nonlinear mechanical connections. This works have reproduced the random input signal to implement the real road vibration's data in the lab. The replaced $m^2$ MISO equivalent control systems satisfied the design specifications of the original $m^*m$ MIMO control system and developed the mathematical method using quantitative feedback theory based on schauder's fixed point theorem. This control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) having the minimum bandwidth for parameters of uncertain plant. The efficacy of the designed controller is verified through the dynamic simulation with combined hydraulic model and Adams simulator model. The Matlab simulation results to connect with Adams simulator model show that the proposed control technique works well under uncertain hydraulic plant system. The designed control system has satisfied robust performance with stability bounds, tracking bounds and disturbance. The Hydraulic road simulator consists of the specimen, hydraulic pump, servo valve, hydraulic actuator and its control equipments

A study on ship motion control system design for developing autonomous system: Experimental study (자율운항시스템 개발을 위한 선박운동제어에 관한 연구 : 실험적 연구)

  • KIM, Kyong-Hyon;SUH, Jin-Ho;KIM, Young-Bok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.2
    • /
    • pp.172-180
    • /
    • 2019
  • In this study, a ship motion control system design method is introduced for autonomous ships. Some related research results and technologies for autonomous ships have already been developed and applied to testing ships. Recently, the Norwegian Maritime Authority and the Coastal Administration have signed an agreement and started to test autonomous ships in the defined area. Considering recent technology trends and background, in this paper, the authors also try to develop autonomous ship control technologies. In the designed control system, an observer is introduced to estimate unmeasurable system states. Based on the servosystem with state estimator, ship motion control experiment is performed to evaluate control performance using a model ship in water basin.

FE Model Based Parametric Study Support System

  • Jang, Beom-Seon
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.4
    • /
    • pp.7-19
    • /
    • 2008
  • In preliminary ship design, a parametric study is a more realistic way to explore design space and analyze design problem than an optimization technique due to time-consuming computational work or a difficulty in incorporating all constraints into the optimization formulation. In the parametric study, feasible alternatives are examined in various aspects; the best one can be selected. Among the aspects, the strength assessment by FE analysis is an essential process in the ship design. This paper proposes a system to facilitate a parametric study for FE model based on design of experiment (DOE). It works on a FE pre-processor environment and assists a user to define a parametric study by interacting with FE model. It also provides an interface module with a FE solver in order to control the input file and extract predefined FE results from the output file. Based on the proposed system, a better understating and a better design are expected to be achieved.

Stochastic Optimal Control and Network Co-Design for Networked Control Systems

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.515-525
    • /
    • 2007
  • In this paper, we develop a co-design methodology of stochastic optimal controllers and network parameters that optimizes the overall quality of control (QoC) in networked control systems (NCSs). A new dynamic model for NCSs is provided. The relationship between the system stability and performance and the sampling frequency is investigated, and the analysis of co-design of control and network parameters is presented to determine the working range of the sampling frequency in an NCS. This optimal sampling frequency range is derived based on the system dynamics and the network characteristics such as data rate, time-delay upper bound, data-packet size, and device processing time. With the optimal sampling frequency, stochastic optimal controllers are designed to improve the overall QoC in an NCS. This co-design methodology is a useful rule of thumb to choose the network and control parameters for NCS implementation. The feasibility and effectiveness of this co-design methodology is verified experimentally by our NCS test bed, a ball magnetic-levitation (maglev) system.

Design of Autonomous Cruise Controller with Linear Time Varying Model

  • Chang, Hyuk-Jun;Yoon, Tae Kyun;Lee, Hwi Chan;Yoon, Myung Joon;Moon, Chanwoo;Ahn, Hyun-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2162-2169
    • /
    • 2015
  • Cruise control is a technology for automatically maintaining a steady speed of vehicle as set by the driver via controlling throttle valve and brake of vehicle. In this paper we investigate cruise controller design method with consideration for distance to vehicle ahead. We employ linear time varying (LTV) model to describe longitudinal vehicle dynamic motion. With this LTV system we approximately model the nonlinear dynamics of vehicle speed by frequent update of the system parameters. In addition we reformulate the LTV system by transforming distance to leading vehicle into variation of system parameters of the model. Note that in conventional control problem formulation this distance is considered as disturbance which should be rejected. Consequently a controller can be designed by pole placement at each instance of parameter update, based on the linear model with the present system parameters. The validity of this design method is examined by simulation study.

Experimental Evaluation of Unmanned Aerial Vehicle System Software Based on the TMO Model

  • Park, Han-Sol;Kim, Doo-Hyun;Kim, Jung-Guk;Chang, Chun-Hyon
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.4
    • /
    • pp.357-374
    • /
    • 2008
  • Over the past few decades, a considerable number of studies have been conducted on the technologies to build an UAV (Unmanned Aerial Vehicle) control system. Today, focus in research has moved from a standalone control system towards a network-centric control system for multiple UAV systems. Enabling the design of such complex systems in easily understandable forms that are amenable to rigorous analysis is a highly desirable goal. In this paper, we discuss our experimental evaluation of the Time-triggered Message-triggered Object (TMO) structuring scheme in the design of the UAV control system. The TMO scheme enables high-level structuring together with design-time guaranteeing of accurate timings of various critical control actions with significantly smaller efforts than those required when using lower-level structuring schemes based on direct programming of threads, UDP invocations, etc. Our system was validated by use of environment simulator developed based on an open source flight simulator named FlightGear. The TMO-structured UAV control software running on a small computing platform was easily connected to a simulator of the surroundings of the control system, i.e., the rest of the UAV and the flight environment. Positive experiences in both the TMO-structured design and the validation are discussed along with potentials for future expansion in this paper.