Recently school food service operations are confronted with the wide spread pressures for accountability and the need to increase productivity. This paper is concerned with the make-or-buy decision framework for school food service systems considering the multi-attributes in the decision making. For the purpose of considering the multi-attributes analysis method in decision making for the school foodservice, we developed a make-or-buy decision framework using the multi-attribute analysis method, analytic hierarchy process, AHP method for school food service system. Finally, we developed a systematic and practical solution builder for a three-step decision support system in the view of 1) brainstorming for the idea generation, 2) analytic hierarchy process, AHP as a multi-attribute structure ed analysis method, and 3) aggregation logic model to integrate the results of reviewers. We developed web based program and applied it to a school foodservice problem.
Many heuristic attribute reduction algorithms have been proposed to find a single reduct that functions as the entire set of original attributes without loss of classification capability; however, the proposed reducts are not always perfect for these multiclass datasets. In this study, based on a probabilistic rough set model, we propose the class-oriented attribute reduction (COAR) algorithm, which separately finds a reduct for each target class. Thus, there is a strong dependence between a reduct and its target class. Consequently, we propose a type of ensemble constructed on a group of classifiers based on class-oriented reducts with a customized weighted majority voting strategy. We evaluated the performance of our proposed algorithm based on five real multiclass datasets. Experimental results confirm the superiority of the proposed method in terms of four general evaluation metrics.
In this paper, we consider curriculum mining as an application of process mining in the domain of education. The basic objective of the curriculum mining is to construct a registration pattern model by using logs of registration data. However, subject registration patterns of students are very unstructured and complicated, called a spaghetti model, because it has a lot of different cases and high diversity of behaviors. In general, it is typically difficult to develop and analyze registration patterns. In the literature, there was an effort to handle this issue by using clustering based on the features of students and behaviors. However, it is not easy to obtain them in general since they are private and qualitative. Therefore, in this paper, we propose a new framework of curriculum mining applying K-means clustering based on subject attributes to solve the problems caused by unstructured process model obtained. Specifically, we divide subject's attribute data into two parts : categorical and numerical data. Categorical attribute has subject name, class classification, and research field, while numerical attribute has ABEEK goal and semester information. In case of categorical attribute, we suggest a method to quantify them by using binarization. The number of clusters used for K-means clustering, we applied Elbow method using R-squared value representing the variance ratio that can be explained by the number of clusters. The performance of the suggested method was verified by using a log of student registration data from an 'A university' in terms of the simplicity and fitness, which are the typical performance measure of obtained process model in process mining.
An increasing number of children are now using the Internet. They are starting at a younger age, using a variety of devices and spending more time online. It becomes an important problem to protect the children in online environment. The Internet can be a major channel for their education, creativity and self-expression. However, it also carries a spectrum of risks to which children are more vulnerable than adults. In order to solve these problems, we suggested a binding model of user attributes for enhanced user authentication. We also studied the requirements and prerequisites of a binding model of user attributes. In this paper we described the architecture of binding model of user attributes and showed the effectiveness of the suggested model using simulation. This model can be utilized to enhanced user authentication and service authorization.
Purpose: The purpose of this study is to find a way to improve the quality of medical tourism education services in Korea. Methods: This study used a method of conducting a survey of students who have completed medical tourism education and customer satisfaction coefficient and potential customer satisfaction index were calculated by applying the Kano model. Results: The results of this study are as follows; First, Eight medical tourism education service quality factors were classified as an attractive quality attribute. Second, Thirteen medical tourism education service quality factors were classified as an one-dimensional quality attribute. Third, Online education operation factor was classified as an indifferent quality attribute. Fourth, Instructor quality factor and physical environment quality factor showed relatively high better and high worse coefficients. Finally, According to the PCSI index, it was found that the scope of improvement was the largest when focusing intensively on the quality factors of instructors. Conclusion: This study suggests strategic implications for nurturing excellent professional manpower through quality improvement of education services by identifying the quality factors of major medical tourism education services perceived by students.
본 연구에서는 BIM과 GIS간 공간정보 상호 운용성을 위해 BIM과 GIS의 대표적인 중립 모델인 IFC와 CityGML간의 상호 운용성을 위한 속성 정보 맵핑을 위한 규칙 정의 메타 데이터를 제안하고 구현 한다. 이를 위해 IFC와 CityGML의 맵핑을 위한 구조를 분석하고 이를 바탕으로 BIM과 GIS간 정보 상호 운용성을 위한 속성 정보 맵핑을 위한 메타 데이터를 제안한다. 메타 데이터는 BIM 모델과 GIS 모델 간의 연결을 위한 연결 정보, 관점 별 맵핑 규칙, 맵핑 규칙을 정의한 연산자와 속성 정의로 구성된다. 이 구조를 설계하고 XML로 표현하였으며, 이를 이용해 속성 정보를 자동 맵핑하는 시스템을 구현하였다.
최근 모바일 클라우드 환경에서 공유되는 데이터의 기밀성과 유연성있는 접근제어를 보장하기 위해서 KP-ABE(Key Policy-Attribute Based Encryption)와 PRE(Proxy Re-Encryption)를 활용한 시스템 모델이 제안되었다. 그러나 기존 방식은 철회된 사용자와 클라우드 서버간의 공모 공격으로 데이터 기밀성을 침해하게 된다. 이러한 문제를 해결하기 위해서 제안 방식은 클라우드 서버에 저장되는 데이터 파일(data file)을 분산 저장하여 데이터 기밀성을 보장하고 비밀분산(Secret Sharing)를 통해서 프록시 재암호화키에 대한 변조 공격을 방지한다. 그리고 제안방식을 의료 환경에 적용한 프로토콜 모델을 구성한다.
Lee(2016a)는 Bar-Lev et al.(2004)의 모형에 무관한 변수를 추가하여 민감한 변수, 변환된 변수 그리고 무관한 변수 중에서 확률장치에 의해 선택된 질문에 응답하도록 하는 승법 양적 확률화응답모형을 제안하였다. 본 연구에서는 Bar-Lev et al.(2004)이 제안한 강요 양적속성 승법모형에 무관한 변수와 강요응답을 새롭게 추가한 혼합 승법 양적속성 확률화응답모형을 제안하였다. 그리고 무관한 변수에 대한 정보를 아는 경우와 모르는 경우로 나누어 민감한 양적속성을 추정할 수 있는 이론적 체계를 구축하였다. 또한, 모집단이 층화되어 있을 때에도 제안한 모형의 적용이 가능하도록 층화 혼합 승법 양적속성 확률화응답모형으로 확장하였고 층화추출에 있어서 비례배분과 최적배분 문제를 다루었다. 마지막으로 기존의 승법모형인 Eichhorn-Hayre(1983) 모형, Bar-Lev et al.(2004) 모형, Gjestvang-Singh(2007) 모형, Lee(2016a) 모형이 제안한 혼합 승법 양적속성 확률화응답모형의 특수한 형태임을 확인할 수 있었고, Bar-Lev et al.(2004) 모형과의 효율성 비교 결과 $C_x$값이 작을수록 그리고 $C_z$값이 클수록 제안한 혼합 승법 양적속성 확률화응답모형이 Bar-Lev et al.(2004)의 모형보다 효율적이었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권2호
/
pp.647-669
/
2016
Multiple attribute for decision making including user preference will increase the complexity of route selection process. Various approaches have been proposed to solve the optimal route selection problem. In this paper, multi attribute decision making (MADM) algorithms such as Simple Additive Weighting (SAW), Weighted Product Method (WPM), Analytic Hierarchy Process (AHP) method and Total Order Preference by Similarity to the Ideal Solution (TOPSIS) methods have been proposed for acoustic signature based optimal route selection to facilitate user with better quality of service. The traffic density state conditions (very low, low, below medium, medium, above medium, high and very high) on the road segment is the occurrence and mixture weightings of traffic noise signals (Tyre, Engine, Air Turbulence, Exhaust, and Honks etc) is considered as one of the attribute in decision making process. The short-term spectral envelope features of the cumulative acoustic signals are extracted using Mel-Frequency Cepstral Coefficients (MFCC) and Adaptive Neuro-Fuzzy Classifier (ANFC) is used to model seven traffic density states. Simple point method and AHP has been used for calculation of weights of decision parameters. Numerical results show that WPM, AHP and TOPSIS provide similar performance.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권11호
/
pp.4028-4049
/
2014
Attribute-based encryption (ABE) is a promising cryptographic primitive for implementing fine-grained data sharing in cloud computing. However, before ABE can be widely deployed in practical cloud storage systems, a challenging issue with regard to attributes and user revocation has to be addressed. To our knowledge, most of the existing ABE schemes fail to support flexible and direct revocation owing to the burdensome update of attribute secret keys and all the ciphertexts. Aiming at tackling the challenge above, we formalize the notion of ciphertext-policy ABE supporting flexible and direct revocation (FDR-CP-ABE), and present a concrete construction. The proposed scheme supports direct attribute and user revocation. To achieve this goal, we introduce an auxiliary function to determine the ciphertexts involved in revocation events, and then only update these involved ciphertexts by adopting the technique of broadcast encryption. Furthermore, our construction is proven secure in the standard model. Theoretical analysis and experimental results indicate that FDR-CP-ABE outperforms the previous revocation-related methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.