• 제목/요약/키워드: Model attribute

검색결과 807건 처리시간 0.021초

SCHEMATIC ESTIMATING MODEL FOR CONSTRUCTION PROJECTS -USING PRICIPLE COMPONENT ANALYSIS AND STRUCTURAL EQUATION METHOD

  • Young-Sil Jo;Hyun-Soo Lee;Moon-Seo Park
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1223-1230
    • /
    • 2009
  • In the construction industry, Case-Based Reasoning (CBR) is considered to be the most suitable approach and determining the attribute weights is an important CBR problem. In this paper, a method is proposed for determining attribute weights that are calculated with attribute relation. The basic items of consideration were qualitative and quantitative influence factors. These quantitative factors were related to the qualitative factors to develop a Cost Drivers-structural equation model which can be used to estimate construction cost by considering attribute weight. The process of determining the attribute weight-structural equation model consists o 4 phases: selecting the predominant Cost Drivers for the SEM, applying the Cost Driers in the SEM, determining and verifying the attribute weights and deriving the Cost Estimation Equation. This study develops a cost estimating technique that complements the CBR method with a Cost Drivers-structural equation model which can be actively used during the schematic estimating phases of construction.

  • PDF

관광객 선호도에 영향을 미치는 관광지 음식점의 속성수준 평가 및 한계지불의사액 분석: 전남지역 관광객을 대상으로 (Measuring Attribute Levels Influencing Tourists' Preference for Restaurants in Tourist Area and Marginal Willingness to Pay: Among Tourists in Jeonnam Area)

  • 강종헌;정항진
    • 한국식생활문화학회지
    • /
    • 제22권6호
    • /
    • pp.794-800
    • /
    • 2007
  • The purpose of this study was to measure the tourists' preference for alternative restaurants with different combinations of 4 attribute levels: origin description, food type, price and service guarantee. A total of 210 questionnaires were completed from tourists who visited Kwangyang, Suncheon and Yeosu during Jan. 2 - Jan. 15, 2007. Conjoint experiment method was used to develop hypothetical restaurants. Ordinal probit model was used to measure the effects of attribute levels on the tourists' preference. Results of the study demonstrated that the ordinal probit model analysis result for the data indicated excellent model fit. The effects of attribute levels (origin description, traditional food, fusion food, price, service guarantee) on the tourists' preference were statistically significant. As expected, estimates of marginal willingness to pay for origin description(3.063), food type(2.349), and service guarantee(2.356) were statistically significant. Moreover, tourists were more willing to pay for origin description than other attribute levels. Tourists also considered the origin description as the very important attribute. In conclusion, based on conjoint analysis, a model was proposed of marginal willingness to pay of attribute levels. It should be noted that the original model was modified and should, preferably, be validated in future research.

백본 네트워크에 따른 사람 속성 검출 모델의 성능 변화 분석 (Analyzing DNN Model Performance Depending on Backbone Network )

  • 박천수
    • 반도체디스플레이기술학회지
    • /
    • 제22권2호
    • /
    • pp.128-132
    • /
    • 2023
  • Recently, with the development of deep learning technology, research on pedestrian attribute recognition technology using deep neural networks has been actively conducted. Existing pedestrian attribute recognition techniques can be obtained in such a way as global-based, regional-area-based, visual attention-based, sequential prediction-based, and newly designed loss function-based, depending on how pedestrian attributes are detected. It is known that the performance of these pedestrian attribute recognition technologies varies greatly depending on the type of backbone network that constitutes the deep neural networks model. Therefore, in this paper, several backbone networks are applied to the baseline pedestrian attribute recognition model and the performance changes of the model are analyzed. In this paper, the analysis is conducted using Resnet34, Resnet50, Resnet101, Swin-tiny, and Swinv2-tiny, which are representative backbone networks used in the fields of image classification, object detection, etc. Furthermore, this paper analyzes the change in time complexity when inferencing each backbone network using a CPU and a GPU.

  • PDF

구조실험정보를 위한 데이터 모델의 구성 및 사용성 평가 (Evaluation of Organization and Use of Data Model for Structural Experiment Information)

  • 이창호
    • 한국전산구조공학회논문집
    • /
    • 제28권6호
    • /
    • pp.579-588
    • /
    • 2015
  • 구조실험을 위한 데이터 모델은 구조실험에 관련된 실험정보를 정형화하여 표현하므로 데이터 저장소를 개발하는데 이용할 수 있다. 데이터 모델은 특히 대규모의 구조실험정보 또는 일반적인 다양한 실험정보를 위한 데이터 저장소에 효과적인데 예를 들면 NEES에서 개발한 NEEShub Project Warehouse가 있다. 본 논문은 데이터 모델의 구성과 사용을 평가하기 위한 평가요소를 제안하고 있다. 클래스의 속성이 값을 갖는지를 의미하는 AVE(attribute value existence)란 용어를 도입하여 속성의 사용성에 대한 Attribute AVE, 클래스의 사용성에 대한 Class AVE, 하위레벨에 있는 클래스를 포함하는 Class Level AVE, 하나의 프로젝트의 모든 클래스를 포함하는 Project AVE, 모든 프로젝트를 포함하는 데이터 모델에 대한 Data Model AVE를 정의하였다. 이러한 평가요소들을 NEES 데이터 모델의 프로젝트들에 적용하였는데 데이터 모델내의 클래스와 객체에 대한 사용성을 수치적으로 기술하여 평가하는 것이 가능하였다.

Randomized Response Model with Discrete Quantitative Attribute by Three-Stage Cluster Sampling

  • Lee, Gi-Sung;Hong, Ki-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권4호
    • /
    • pp.1067-1082
    • /
    • 2003
  • In this paper, we propose a randomized response model with discrete quantitative attribute by three-stage cluster sampling for obtaining discrete quantitative data by using the Liu & Chow model(1976), when the population was made up of sensitive discrete quantitative clusters. We obtain the minimum variance by calculating the optimum number of fsu, ssu, tsu under the some given constant cost. And we obtain the minimum cost under the some given accuracy.

  • PDF

관광 지역 음식점에 대한 관광객들의 선호도 평가 (Assessing Tourists' Restaurant Preferences within Tourism Area)

  • 강종헌;정항진
    • 동아시아식생활학회지
    • /
    • 제18권2호
    • /
    • pp.165-171
    • /
    • 2008
  • The purpose of this study was to measure tourists' preference for alternative restaurants with different combinations of attribute levels: grown area logo, origin description, traditional food, fusion food, national food, and price. A total of 210 questionnaires were completed. A conjoint experimental method was used to develop hypothetical restaurants, and an ordinal probit model was used to measure the effects of the attribute levels on tourists' preference. The ordinal probit model analysis results for the data indicated an excellent model fit. The effects of the attribute levels on tourists' preferences were statistically significant. As expected, estimates of the marginal willingness to pay were statistically significant Moreover, the tourists were more willing to pay for grown area logo as compared to the other attribute levels. The tourists also considered the grown area logo as a very important attribute. Withe regard to developing and testing conjoint models in the design of choice experiments involving multifactor alternatives, this study may approach a deeper understanding of the conjoint experiment. Greater understanding of the conjoint experiment can improve the managerial diagnoses of the problems as well as the opportunities for different marketing strategies including local branding programs and menu development and marketing communications.

  • PDF

HMR 상품의 선택속성이 1인 가구의 소비자 구매의도에 미치는 영향 - 소비자 온라인 리뷰의 조절효과 중심으로 - (The Effect of Selection Attribute of HMR Product on the Consumer Purchasing Intention of an Single Household - Centered on the Regulation Effect of Consumer Online Reviews -)

  • 김희연
    • 한국조리학회지
    • /
    • 제22권8호
    • /
    • pp.109-121
    • /
    • 2016
  • This study analyzed the effect of five sub-variables' attribute of HMR: features of information, diversity, promptness, price and convenience, on the consumer purchasing intention. In addition, the regulation effect of positive reviews and negative reviews of consumers' online reviews between HMR selection attribute and purchasing intention was also tested. Results are following. First, convenience feature (B=.577, p<.001) and diversity feature (B=.093, p<.01) among the effect of HMR selection attribute had a positive (+) effect on purchasing intention. On the other hand, promptness feature (B=.235, p<.001) and price feature (B=.161, p<.001), and information feature (B=.288, p<.001) were not significant effect on purchasing intention. Second, result of regulation effect of the positive reviews of consumer's online review between the selection attribute of the HMR product and consumers' purchasing intention, in the first-stage model in which the selection attribute of the HMR product is input as an independent variable, there was a significant positive (+) effect on all the features of convenience, diversity, promptness, price, and information. In addition, there was significant positive (+) main effect (B=.472, p<.001) in the second step model in which the consumers' positive reviews, that is a regulation variable. Furthermore, the feature of price (B=.068, p<.05) had a significant positive (+) effect in the third stage in which the selection attribute of the HMR product that is an independent variable and the interaction of the positive review. However, the feature of information (B=-.063, p<.05) showed negative (-) effect, and there was no effect on the features of convenience, diversity, and promptness. Third, as a result of testing the regulation effect of the negative reviews of consumers' online reviews between HMR product selection attribute and consumers' purchasing intention, in the first-stage model in which the selection attribute of the HMR product was a positive (+) effect on all the features of convenience, diversity, promptness, price, and information. In the second-stage model in which consumers' negative reviews (B=-.113, p<.001) had negative (-) effect. In the third-stage in which the selection attribute of the HMR product and the interactions of the negative reviews was a positive (+) effect with the feature of price (B=.113, p<.01). Last, there was no effect at all on the features of convenience, promptness, and information.

수정된 이원평가표를 이용한 품질속성의 분류에 관한 연구 (Classification of Quality Attributes Using Two-dimensional Evaluation Table)

  • 김광필;송해근
    • 대한안전경영과학회지
    • /
    • 제20권1호
    • /
    • pp.41-55
    • /
    • 2018
  • For several decades, attribute classification methods using the asymmetrical relationship between an attribute performance and the satisfaction of that attribute have been explored by numerous researchers. In particular, the Kano model, which classifies quality attributes into 5 elements using simple questionnaire and two-dimensional evaluation table, has gained popularity: Attractive, One-dimensional, Must-be, Indifferent, and Reverse quality. As Kano's model is well accepted, many literatures have introduced categorization methods using the Kano's evaluation table at attribute level. However, they applied different terminologies and classification criteria and this causes confusion and misunderstanding. Therefore, a criterion for quality classification at attribute level is necessary. This study is aimed to suggest a new attribute classification method that sub-categorizes quality attributes using 5-point ordinal point and Kano's two-dimensional evaluation table through an extensive literature review. For this, the current study examines the intrinsic and extrinsic problems of the well-recognized Kano model that have been used for measuring customer satisfaction of products and services. For empirical study, the author conducted a comparative study between the results of Kano's model and the proposed method for an e-learning case (33 attributes). Results show that the proposed method is better in terms of ease of use and understanding of kano's results and this result will contribute to the further development of the attractive quality theory that enables to understand both the customers explicit and implicit needs.

An Additive Quantitative Randomized Response Model by Cluster Sampling

  • Lee, Gi-Sung
    • 응용통계연구
    • /
    • 제25권3호
    • /
    • pp.447-456
    • /
    • 2012
  • For a sensitive survey in which the population is comprised of several clusters with a quantitative attribute, we present an additive quantitative randomized response model by cluster sampling that adapts a two-stage cluster sampling instead of a simple random sample based on Himmelfarb-Edgell's additive quantitative attribute model and Gjestvang-Singh's one. We also derive optimum values for the number of 1st stage clusters and the optimum values of observation units in a 2nd stage cluster under the condition of minimizing the variance given constant cost. We can see that Himmelfarb-Edgell's model is more efficient than Gjestvang-Singh's model under the condition of cluster sampling.

Semi-Supervised Spatial Attention Method for Facial Attribute Editing

  • Yang, Hyeon Seok;Han, Jeong Hoon;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3685-3707
    • /
    • 2021
  • In recent years, facial attribute editing has been successfully used to effectively change face images of various attributes based on generative adversarial networks and encoder-decoder models. However, existing models have a limitation in that they may change an unintended part in the process of changing an attribute or may generate an unnatural result. In this paper, we propose a model that improves the learning of the attention mask by adding a spatial attention mechanism based on the unified selective transfer network (referred to as STGAN) using semi-supervised learning. The proposed model can edit multiple attributes while preserving details independent of the attributes being edited. This study makes two main contributions to the literature. First, we propose an encoder-decoder model structure that learns and edits multiple facial attributes and suppresses distortion using an attention mask. Second, we define guide masks and propose a method and an objective function that use the guide masks for multiple facial attribute editing through semi-supervised learning. Through qualitative and quantitative evaluations of the experimental results, the proposed method was proven to yield improved results that preserve the image details by suppressing unintended changes than existing methods.