• Title/Summary/Keyword: Model Surgery

Search Result 1,539, Processing Time 0.034 seconds

Novel condylar repositioning method for 3D-printed models

  • Sugahara, Keisuke;Katsumi, Yoshiharu;Koyachi, Masahide;Koyama, Yu;Matsunaga, Satoru;Odaka, Kento;Abe, Shinichi;Takano, Masayuki;Katakura, Akira
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.4.1-4.4
    • /
    • 2018
  • Background: Along with the advances in technology of three-dimensional (3D) printer, it became a possible to make more precise patient-specific 3D model in the various fields including oral and maxillofacial surgery. When creating 3D models of the mandible and maxilla, it is easier to make a single unit with a fused temporomandibular joint, though this results in poor operability of the model. However, while models created with a separate mandible and maxilla have operability, it can be difficult to fully restore the position of the condylar after simulation. The purpose of this study is to introduce and asses the novel condylar repositioning method in 3D model preoperational simulation. Methods: Our novel condylar repositioning method is simple to apply two irregularities in 3D models. Three oral surgeons measured and evaluated one linear distance and two angles in 3D models. Results: This study included two patients who underwent sagittal split ramus osteotomy (SSRO) and two benign tumor patients who underwent segmental mandibulectomy and immediate reconstruction. For each SSRO case, the mandibular condyles were designed to be convex and the glenoid cavities were designed to be concave. For the benign tumor cases, the margins on the resection side, including the joint portions, were designed to be convex, and the resection margin was designed to be concave. The distance from the mandibular ramus to the tip of the maxillary canine, the angle created by joining the inferior edge of the orbit to the tip of the maxillary canine and the ramus, the angle created by the lines from the base of the mentum to the endpoint of the condyle, and the angle between the most lateral point of the condyle and the most medial point of the condyle were measured before and after simulations. Near-complete matches were observed for all items measured before and after model simulations of surgery in all jaw deformity and reconstruction cases. Conclusions: We demonstrated that 3D models manufactured using our method can be applied to simulations and fully restore the position of the condyle without the need for special devices.

A Mechanical Model of Excimer Laser Surgery (엑시머 레이저 수술의 역학적 모델)

  • Shin, Jung-Woog;Kim, Jong-Hyun
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.05
    • /
    • pp.57-60
    • /
    • 1993
  • A finite element-based computer simulation of excimer laser susery was conducted to study some factors on the surgery. In particular, the radius of curvature at the apex of the cornea was examined under various surgical conditions. Corneal tissue was assumed to be a nearly incompressible, linear elastic, homogeneous, isotropic material under very small deformation. The geometry of the human cornea was taken from the experimental data[1]. The simulation utilized ANSYS(Swanson Analysis System Inc.Rev.4.4A). In this study, the major factors which affect the outcomes of the excimer laser surgery were investigated. First, two patterns of surgery with various surgery thickness(40-70micrometers) were examind. The pattern#1 describes the meridian from the apex to the edge of the surgery area to be straight. And the corresponding meridian of the pattern 2 can be expressed as a quardratic function. The results show that the pattern #2 is more realistic and effective. Then, the effects of other factors were investigated based on the pattern #2. Other factors are:various diameters of the surgical area (3-8 milimeters), Young's modules(3.5-4.5MPa), and depth of surgery at the apex(40-70micrometers). Compared with the computer simulation of the radial keratotomy surgery[2], the excimer laser surgery was proven to be more effective in treating myopia patients. In conculusion, the results of the simulation are qualitative agreement with clinical experience[3] indicating the potential of the finite element model of the surgery as a guideline to the surgeon before actual surgery.

  • PDF

Mandibular Reconstruction using Simulation Surgery after Segmental Mandibulectomy

  • Hwang, Jong-Hyun;Kim, Ji-Wan;Ahn, Kang-Min
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.12-15
    • /
    • 2016
  • Functional and esthetic reconstruction after segmental mandibulectomy is one of the most challenging surgeries in microsurgical reconstruction field. Simulation surgery before free flap reconstruction has been performed for efficient surgery and successful results. Fibula free flap is the flap of the choice for reconstruction of the segmental mandibular defect. Straight nature of the fibula bone requires multiple segmentations to fit into mandible. 3D rapid prototype (RP) model gives a lot of information for mandibular reconstruction. The purpose of this study was to report mandibular reconstruction with free fibular flap using simulation surgery. A total of 30 consecutive patients were included for functional and esthetic evaluation. Among 30 patients, two flaps showed necrosis after radiotherapy. The other flaps were all survived and showed successful reconstruction in both function and esthetics.

Gender-specific cephalometric features related to obesity in sleep apnea patients: trilogy of soft palate-mandible-hyoid bone

  • Cho, Seok Hyun;Jeon, Jae-Yun;Jang, Kun-Soo;Kim, Sang Yoon;Kim, Kyung Rae;Ryu, Seungho;Hwang, Kyung-Gyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.58.1-58.8
    • /
    • 2019
  • Background: The aim of this study is to investigate the relationship between gender-specific and obesity-related airway anatomy in patients with obstructive sleep apnea (OSA) by using cephalometric analyses. Methods: We retrospectively evaluated 206 patients with suspected OSA undergoing polysomnography and anthropometric measurements such as body mass index, neck circumference, and waist-hip ratio. We checked lateral cephalometry to measure tissue landmarks including angle from A point to nasion to B point (ANB), soft palate length (SPL), soft palate thickness (SPT), retropalatal space (RPS), retrolingual space (RLS), and mandibular plane to hyoid (MPH). Results: Male with OSA showed significantly increased SPL (P = .006) compared with controls. SPL and MPH had significant correlation with apnea-hypopnea index (AHI) and central obesity. Female with OSA showed significantly increased ANB (P = .013) and SPT (P = .004) compared with controls. The receiver operating characteristic curves revealed that SPT in male and ANB and SPT in female were significant in model 1 (AHI ≥ 5) and model 2 (AHI ≥ 15). MPH was also significant for male in model 2. Conclusion: Male and female with OSA had distinct anatomic features of the upper airway and different interactions among soft palate, mandible, and hyoid bone.

Knockdown of lncRNA PVT1 Inhibits Vascular Smooth Muscle Cell Apoptosis and Extracellular Matrix Disruption in a Murine Abdominal Aortic Aneurysm Model

  • Zhang, Zhidong;Zou, Gangqiang;Chen, Xiaosan;Lu, Wei;Liu, Jianyang;Zhai, Shuiting;Qiao, Gang
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.218-227
    • /
    • 2019
  • This study was designed to determine the effects of the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) on vascular smooth muscle cell (VSMC) apoptosis and extracellular matrix (ECM) disruption in a murine abdominal aortic aneurysm (AAA) model. After injection of PVT1-silencing lentiviruses, AAA was induced in Apolipoprotein E-deficient ($ApoE^{-/-}$) male mice by angiotensin II (Ang II) infusion for four weeks. After Ang II infusion, mouse serum levels of pro-inflammatory cytokines were analysed, and aortic tissues were isolated for histological, RNA, and protein analysis. Our results also showed that PVT1 expression was significantly upregulated in abdominal aortic tissues from AAA patients compared with that in controls. Additionally, Ang II treatment significantly increased PVT1 expression, both in cultured mouse VSMCs and in AAA murine abdominal aortic tissues. Of note, the effects of Ang II in facilitating cell apoptosis, increasing matrix metalloproteinase (MMP)-2 and MMP-9, reducing tissue inhibitor of MMP (TIMP)-1, and promoting switching from the contractile to synthetic phenotype in cultured VSMCs were enhanced by overexpression of PVT1 but attenuated by knockdown of PVT1. Furthermore, knockdown of PVT1 reversed Ang II-induced AAA-associated alterations in mice, as evidenced by attenuation of aortic diameter dilation, marked adventitial thickening, loss of elastin in the aorta, enhanced aortic cell apoptosis, elevated MMP-2 and MMP-9, reduced TIMP-1, and increased pro-inflammatory cytokines. In conclusion, our findings demonstrate that knockdown of lncRNA PVT1 suppresses VSMC apoptosis, ECM disruption, and serum pro-inflammatory cytokines in a murine Ang II-induced AAA model.

AI-based Automatic Spine CT Image Segmentation and Haptic Rendering for Spinal Needle Insertion Simulator (척추 바늘 삽입술 시뮬레이터 개발을 위한 인공지능 기반 척추 CT 이미지 자동분할 및 햅틱 렌더링)

  • Park, Ikjong;Kim, Keehoon;Choi, Gun;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.316-322
    • /
    • 2020
  • Endoscopic spine surgery is an advanced surgical technique for spinal surgery since it minimizes skin incision, muscle damage, and blood loss compared to open surgery. It requires, however, accurate positioning of an endoscope to avoid spinal nerves and to locate the endoscope near the target disk. Before the insertion of the endoscope, a guide needle is inserted to guide it. Also, the result of the surgery highly depends on the surgeons' experience and the patients' CT or MRI images. Thus, for the training, a number of haptic simulators for spinal needle insertion have been developed. But, still, it is difficult to be used in the medical field practically because previous studies require manual segmentation of vertebrae from CT images, and interaction force between the needle and soft tissue has not been considered carefully. This paper proposes AI-based automatic vertebrae CT-image segmentation and haptic rendering method using the proposed need-tissue interaction model. For the segmentation, U-net structure was implemented and the accuracy was 93% in pixel and 88% in IoU. The needle-tissue interaction model including puncture force and friction force was implemented for haptic rendering in the proposed spinal needle insertion simulator.

Designing and Implementing 3D Virtual Face Aesthetic Surgery System (3D 가상 얼굴 성형 제작 시스템 설계 및 구현)

  • Lee, Cheol-Woong;Kim, Il-Min;Cho, Sae-Hong
    • Journal of Digital Contents Society
    • /
    • v.9 no.4
    • /
    • pp.751-758
    • /
    • 2008
  • The purpose of this study is to implement 3D Face Model, which resembles a user, using 3D Graphic techniques. The implemented 3D Face model is used to further study and implement 3D Facial Aesthetic Surgery System, that can be used to increase the satisfaction rate of patient by comparing before and after facial aesthetic surgery. For designing and implementing 3D Facial Aesthetic Surgery System, 3D Modeling, Texture Mapping for skin, Database system for facial data are studied and implemented independently. The Detailed Adjustment System is, also, implemented for reflecting the minute description of face. The implemented 3D Facial Aesthetic Surgery System for this paper shows more accuacy, convenience, and satisfaction in compare with the existing system.

  • PDF

Research Priorities in Light of Current Trends in Microsurgical Training: Revalidation, Simulation, Cross-Training, and Standardisation

  • Nicholas, Rebecca Spenser;Madada-Nyakauru, Rudo N.;Irri, Renu Anita;Myers, Simon Richard;Ghanem, Ali Mahmoud
    • Archives of Plastic Surgery
    • /
    • v.41 no.3
    • /
    • pp.218-224
    • /
    • 2014
  • Plastic surgery training worldwide has seen a thorough restructuring over the past decade, with the introduction of formal training curricula and work-based assessment tools. Part of this process has been the introduction of revalidation and a greater use of simulation in training delivery. Simulation is an increasingly important tool for educators because it provides a way to reduce risks to both trainees and patients, whilst facilitating improved technical proficiency. Current microsurgery training interventions are often predicated on theories of skill acquisition and development that follow a 'practice makes perfect' model. Given the changing landscape of surgical training and advances in educational theories related to skill development, research is needed to assess the potential benefits of alternative models, particularly cross-training, a model now widely used in non-medical areas with significant benefits. Furthermore, with the proliferation of microsurgery training interventions and therefore diversity in length, cost, content and models used, appropriate standardisation will be an important factor to ensure that courses deliver consistent and effective training that achieves appropriate levels of competency. Key research requirements should be gathered and used in directing further research in these areas to achieve on-going improvement of microsurgery training.