• Title/Summary/Keyword: Model Support

Search Result 8,010, Processing Time 0.038 seconds

Performance Estimation of Tunnel Lining Concrete Reinforced Steel Fiber (강섬유 보강 터널 라이닝 콘크리트의 성능 평가)

  • Jeon, Chan-Ki;Kim, Su-Man;Lee, Myung-Soo;Lee, Jong-Eun;Jeon, Joong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.579-582
    • /
    • 2005
  • Tunnel lining is the final support of a tunnel and reflects the results of the interaction between ground and support system. Recently it is very difficult to support and manage the tunnel because the cracks on tunnel lining cause problems in supporting and managing tunnels. Therefore the analysis of the cracks is quite strongly required. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to bridging cracks, steel fiber reinforcement concrete(SFRC) has better crack properties than that of reinforced concrete. In this study, mechanical behaviour of a tunnel lining was examined by model tests. The model tests were carried out under various conditions taking different loading shapes, thicknesses and leakage of lining, and volume content of steel fiber. From these model test, the cracking load, the failure load, defection and cracking position and type were examined and the characteristics of deformation and failure for tunnel lining were estimated and researched.

  • PDF

Partially linear support vector orthogonal quantile regression with measurement errors

  • Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.209-216
    • /
    • 2015
  • Quantile regression models with covariate measurement errors have received a great deal of attention in both the theoretical and the applied statistical literature. A lot of effort has been devoted to develop effective estimation methods for such quantile regression models. In this paper we propose the partially linear support vector orthogonal quantile regression model in the presence of covariate measurement errors. We also provide a generalized approximate cross-validation method for choosing the hyperparameters and the ratios of the error variances which affect the performance of the proposed model. The proposed model is evaluated through simulations.

Soil moisture prediction using a support vector regression

  • Lee, Danhyang;Kim, Gwangseob;Lee, Kyeong Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.401-408
    • /
    • 2013
  • Soil moisture is a very important variable in various area of hydrological processes. We predict the soil moisture using a support vector regression. The model is trained and tested using the soil moisture data observed in five sites in the Yongdam dam basin. With respect to soil moisture data of of four sites-Jucheon, Bugui, Sangieon and Ahncheon which are used to train the model, the correlation coefficient between the esimtates and the observed values is about 0.976. As the result of the application to Cheoncheon2 for validating the model, the correlation coefficient between the estimates and the observed values of soil moisture is about 0.835. We compare those results with those of artificial neural network models.

Forecasting volatility via conditional autoregressive value at risk model based on support vector quantile regression

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.589-596
    • /
    • 2011
  • The conditional autoregressive value at risk (CAViaR) model is useful for risk management, which does not require the assumption that the conditional distribution does not vary over time but the volatility does. But it does not provide volatility forecasts, which are needed for several important applications such as option pricing and portfolio management. For a variety of probability distributions, it is known that there is a constant relationship between the standard deviation and the distance between symmetric quantiles in the tails of the distribution. This inspires us to use a support vector quantile regression (SVQR) for volatility forecasts with the distance between CAViaR forecasts of symmetric quantiles. Simulated example and real example are provided to indicate the usefulness of proposed forecasting method for volatility.

Decision Support Loop based on Knowledge Integration: A Cognitive Model Perspective (지식통합을 기반으로 한 의사결정지원)

  • Kwahk, Kee-Young;Kim, Hee-Woong
    • Asia pacific journal of information systems
    • /
    • v.14 no.1
    • /
    • pp.125-142
    • /
    • 2004
  • Knowledge management has been increasingly recognized as important in business management context. Although knowledge management has been proposed as an enabler to reach competitive advantage, little research has considered applying knowledge to business decision-making activities, which may be the main task of enterprise management. The application of knowledge to decision-making has a more significant impact on organizational performance than mere knowledge management for operational level processing. For this purpose, the present study proposes a decision support loop based on the integration of knowledge by adopting a cognitive modeling approach. The proposed model is then discussed, in the real context of an application case.

Utilization of support vector machine for prediction of fracture parameters of concrete

  • Samui, Pijush;Kim, Dookie
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.215-226
    • /
    • 2012
  • This article employs Support Vector Machine (SVM) for determination of fracture parameters critical stress intensity factor ($K^s_{Ic}$) and the critical crack tip opening displacement ($CTOD_c$) of concrete. SVM that is firmly based on the theory of statistical learning theory, uses regression technique by introducing ${\varepsilon}$-insensitive loss function has been adopted. The results are compared with a widely used Artificial Neural Network (ANN) model. Equations have been also developed for prediction of $K^s_{Ic}$ and $CTOD_c$. A sensitivity analysis has been also performed to investigate the importance of the input parameters. The results of this study show that the developed SVM is a robust model for determination of $K^s_{Ic}$ and $CTOD_c$ of concrete.

Quantitative Structure Activity Relationship Prediction of Oral Bioavailabilities Using Support Vector Machine

  • Fatemi, Mohammad Hossein;Fadaei, Fatemeh
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.543-552
    • /
    • 2014
  • A quantitative structure activity relationship (QSAR) study is performed for modeling and prediction of oral bioavailabilities of 216 diverse set of drugs. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regression (MLR), artificial neural network (ANN), support vector machine (SVM) and random forest (RF) techniques. Comparison between statistical parameters of these models indicates the suitability of SVM over other models. The root mean square errors of SVM model were 5.933 and 4.934 for training and test sets, respectively. Robustness and reliability of the developed SVM model was evaluated by performing of leave many out cross validation test, which produces the statistic of $Q^2_{SVM}=0.603$ and SPRESS = 7.902. Moreover, the chemical applicability domains of model were determined via leverage approach. The results of this study revealed the applicability of QSAR approach by using SVM in prediction of oral bioavailability of drugs.

Comparison of black and gray box models of subspace identification under support excitations

  • Datta, Diptojit;Dutta, Anjan
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.4
    • /
    • pp.365-379
    • /
    • 2017
  • This paper presents a comparison of the black-box and the physics based derived gray-box models for subspace identification for structures subjected to support-excitation. The study compares the damage detection capabilities of both these methods for linear time invariant (LTI) systems as well as linear time-varying (LTV) systems by extending the gray-box model for time-varying systems using short-time windows. The numerically simulated IASC-ASCE Phase-I benchmark building has been used to compare the two methods for different damage scenarios. The efficacy of the two methods for the identification of stiffness parameters has been studied in the presence of different levels of sensor noise to simulate on-field conditions. The proposed extension of the gray-box model for LTV systems has been shown to outperform the black-box model in capturing the variation in stiffness parameters for the benchmark building.

An Interactive Group Decision Support Procedure Considering Preference Strength (선호강도를 고려한 그룹의사결정지원 앨고리듬)

  • Han, Chang-Hee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.4
    • /
    • pp.111-126
    • /
    • 2002
  • This paper presents an interactive decision procedure to aggregate each group member's preferences when each group member articulates his or her preference information incompletely. An index, an indicative for the preference strength between alternatives, is derived to aid each decision maker to articulate preference information about alternatives. We develop a mathematical programming model that can establish dominance relations when the preference information about values of alternatives, attribute weights, and group member's importance weights are provided incompletely. Also, the preference relation between alternatives is to be considered in the model. Based on the preference strength measure and mathematical model, we develop an interactive group decision support procedure.

Tuning the Architecture of Support Vector Machine: The Case of Bankruptcy Prediction

  • Min, Jae-H.;Jeong, Chul-Woo;Kim, Myung-Suk
    • Management Science and Financial Engineering
    • /
    • v.17 no.1
    • /
    • pp.19-43
    • /
    • 2011
  • Tuning the architecture of SVM (support vector machine) is to build an SVM model of better performance. Two different tuning methods of the grid search and the GA (genetic algorithm) have been addressed in the literature, each of which has its own methodological pros and cons. This paper suggests a combined method for tuning the architecture of SVM models, which employs the GAM (generalized additive models), the grid search, and the GA in sequence. The GAM is used for selecting input variables, and the grid search and the GA are employed for finding optimal parameter values of the SVM models. Applying the method to a bankruptcy prediction problem, we show that SVM model tuned by the proposed method outperforms other SVM models.