• Title/Summary/Keyword: Model Stirling Engine

검색결과 19건 처리시간 0.034초

Underwater striling engine design with modified one-dimensional model

  • Li, Daijin;Qin, Kan;Luo, Kai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.526-539
    • /
    • 2015
  • Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

저온도차 모형 스털링 엔진의 최대출력 설계조건 (DESIGN OF A LOW TEMPERATURE DIFFERENCE STIRLING ENGINE)

  • 정평석;원민영;김수연
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.420-423
    • /
    • 2003
  • A low temperature difference model Stirling engine is a small Stirling engine running with several degree of temperature difference without power output. In this study, the design parameters to give maximum power are discussed. As results, the phase angle is about 100 degree, and compression ratio is 1.5% of the ratio of heat source temperatures at maximum power condition.

  • PDF

Ringbom 스터링 엔진의 제작 및 특성 연구 (The characteristics of the Ringbom Stirling engine)

  • 이상원;조경철;원민영;김수연;정평석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.660-664
    • /
    • 2001
  • Ringbom Stirling engine which is a kind of low temperature difference model Stirling engine is manufactured and its characteristics are measured at some temperature differences. Pressure, displacer position and rotation speed are measured. Displacer position and rotation speed are detected by photo-sensor. The hot side of Ringbom Stirling engine is warmed by electric heater. The cold side of Ringbom Stirling engine is cooled by the air. This result may be useful for further design and manufacture of Ringbom Stirling engine. Also, it would be used as an educational material for mechanical engineering students.

  • PDF

가정용 열펌프 구동용 스터링 엔진의 시스템 설계 및 성능 예측 (System Design and Performance Prediction of a Stirling Engine for Residential Heat Pumps)

  • 김웅태;강병하;이춘식
    • 설비공학논문집
    • /
    • 제3권4호
    • /
    • pp.231-240
    • /
    • 1991
  • A design method has been developed for a Stirling engine with a tubular heater and cooler and a screen type regenerator. This paper provides a design procedure to determine the thermodynamic states and the geometric configurations of the Stirling engine for residential heat pumps. The major design is concerned with the working spaces, i.e. compression and expansion spaces and the heat exchangers such as the heater, the cooler and the regenerator. The Schmidt analysis has been employed to obtain the mass flow rates and heat transfer requirements of the system. The performance analysis of a model Stirling engine was performed by Martini-Weiss program to prove the validity of this design method. The results obtained indicate that this design method is valid for the Stirling engine conceptual design and performance analysis.

  • PDF

태양열 발전용 스터링엔진 흡수기 특성연구 (Study of Stirling Engine Receiver for Solar Thermal Power)

  • 김종규;이상남;강용혁
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.227-232
    • /
    • 2008
  • Stirling engine for solar thermal power is an essential part of Dish-Stirling system which generates electricity by using direct normal irradiation and will go into commercialization in near future. For the Stirling engine used in this study is Solo 161 model the capacity of which is 10 kWe and was already used for the Dish-Stirling system of KIER in Jinhae. The receiver of Stirling engine absorbes concentrated solar radiation and transfer it to working fluid of Hydrogen. The working condition of striling engine is high temperature and high pressure to make high efficiency. Therefore the receiver should stand against high temperature of above 800 $^{\circ}C$ and high pressure of max. 150 bar with good performance of heat transfer. The receiver is composed of 78 Inconel tubes of 1/8" with thickness of 0.71 mm and two reserviors which is connected with two cylinders. In order to know the charaterristics of heat transfer of Stirling engine receiver, simulation on the heat transfer of the receiver of Solo 161 is conducted by using CFD code of Fluent. The heat flux on the receiver surface has a shape of Gaussian distribution so, it is necessary to simulate a whole receiver. However, It is difficult and time consuming to simulate the whole receiver that one tube with different heat flux conditions are considered in this study. From the simulation results, heat transfer charateristics of receiver are observed and tube wall and fluid temperature and heat transfer coefficient are obtained and compared with the calculated results from Dittus-Boelter's correlation.

  • PDF

이상단열 모델에 의한 자유피스톤 스털링엔진의 동적거동 해석 (Dynamic Analysis of Free-Piston Stirling Engine Using Ideal Adiabatic Model)

  • 변형현;최헌오;신재균
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1751-1758
    • /
    • 1994
  • A new set of governing equations is derived for the dynamic analysis of the Free-Piston Stirling Engines(EPSE). Equations from the ideal adiabatic model for the thermodynamic analysis of the working fluid are incoporated with the equations of motion for the moving masses of the system, resulting in a set of nonlinear differential equations. The coupled set of equations are numerically integrated with proper intial conditions to obtain a steady state response of the engine. The proposed method is compared with the conventional method of analyzing EPSE based mainly on the ideal isothermal model. The results clearly shows the limitationsl of the conventional methods and the relative advantages of the method proposed in the present study.

감마형 자유피스톤 스털링 엔진의 작동주파수 분석 (Analyses on Working Frequency of A γ-type Free-piston Stirling Engine)

  • 장선준;심규호;이윤표
    • 한국소음진동공학회논문집
    • /
    • 제23권7호
    • /
    • pp.654-661
    • /
    • 2013
  • The dynamic characteristics of a free-piston stirling engine(FPSE) with regard to the working frequency is investigated from theoretical and experimental studies. The FPSE is modeled as a two degree-of-freedom linear vibration system. A theoretical expression on the working frequency is derived from the instability condition for self-excitation based on the linear vibration model. A ${\gamma}$-type free-piston stirling engine is fabricated for experimental studies, and its working frequency is measured on various heater temperatures. Comparisons between the theoretical and experimental results reveal that the working frequency of the test FPSE depends on both the temperature of the compression space and the temperature difference between the expansion and compression spaces.

3차원 연소장에서의 베타 형태의 스털링엔진 고온 열교환기 설계를 위한 수치해석 연구 (NUMERICAL ANALYSIS TO DESIGN HIGH TEMPERATURE HEAT EXCHANGER OF BETA TYPE STIRLING ENGINE IN 3-D COMBUSTION FIELD)

  • 강석훈;김혁주;정대헌
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.56-61
    • /
    • 2011
  • Numerical study is conducted to design the high temperature heat exchanger of Stirling engine by using the commercial CFD solver, FLUENT. The Fin-tube type of heat exchanger is designed as a reference model by considering the type of engine which is ${\beta}$-configuration. To find the optimal design of heat exchanger in heat transfer capacity numerical calculation is conducted by changing the shape, the number, and material of reference model in three-dimensional combustion field. Adjusted one-way constant velocity of working fluid that is helium is considered as the representative velocity of oscillating flow. The optimal design of heat exchanger considering the heat transfer capability is suggested by using the calculation results.

1 KW급 LNG 스털링 엔진 연소실 수치해석 (CFD STUDY ON THE COMBUSTION CHAMBER OF A 1 kW CLASS STIRLING ENGINE)

  • 안준;이윤식;김혁주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.252-257
    • /
    • 2010
  • The availability of the thermal energy has been deeply recognized recently to encourage the cascade usage of thermal energy from combustion. Within the frame work, a 1 kW class Stirling engine based cogeneration system has been proposed for a unit of a distributed energy system. The capacity has been designed to be adequate for the domestic usage, which requires high compactness as well as low emission and noised. To develop a highly efficient system with satisfying these requirements, a premixed slot flame burner has been proposed and a series of numerical simulation has been performed to establish a design tool for the combustion chamber. The thermal radiation model has been found to highly affect the computational results and a proper resolution to analyze the heat transfer characteristics of the high temperature heat exchanger. Finally, the combustion characteristics of the premixed flame with the metal fiber type burner has been studied.

  • PDF

저온도차 모형 스털링 엔진의 작동 해석 (Analysis of The Operation of a Low Temperature Differential Model Stirling Engines)

  • 원민영;정평석
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.519-525
    • /
    • 2005
  • The operation of a low temperature differential model stirling engine is tested and analyzed by Simple analysis model. The heat transfer coefficients are required for Simple analysis, and the coefficients are determined by coinciding the P-V diagram of analysis to the diagram of experiment. The results show a good agreement. However the heat transfer coefficients are quite high by comparison with the ordinary forced convective heat transfer cases.