• Title/Summary/Keyword: Model Quantization

검색결과 226건 처리시간 0.022초

펄스열에서 1인 펄스수와 0인 펄스수의 비를 이용하여 확률연산을 하는 신경회로망 (A Neural Network Based on Stochastic Computation using the Ratio of the Number of Ones and Zeros in the Pulse Stream)

  • 민승재;채수익
    • 전자공학회논문지B
    • /
    • 제31B권7호
    • /
    • pp.211-218
    • /
    • 1994
  • Stochastic computation employs random pulse streams to represent numbers. In this paper, we study a new method to implement the number system which uses the ratio of the numbers of ones and zeros in the pulse streams. In this number system. if P is the probability that a pulse is one in a pulse stream then the number X represented by the pulse stream is defined as P/(1-P). We propose circuits to implement the basic operations such as addition multiplication and sigmoid function with this number system and examine the error characteristics of such operations in stochastic computation. We also propose a neuron model and derive a learning algorithm based on backpropagation for the 3-layered feedforward neural networks. We apply this learning algorithm to a digit recognition problem. To analyze the results, we discuss the errors due to the variance of the random pulse streams and the quantization noise of finite length register.

  • PDF

VQ 방식의 화자인식 시스템 성능 향상을 위한 부쓰트랩 방식 적용 (The bootstrap VQ model for automatic speaker recognition system)

  • 경연정;이진익;이황수
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 하계학술발표대회 논문집 제19권 1호
    • /
    • pp.39-42
    • /
    • 2000
  • VQ 모델로 구성된 화자인식 시스템의 성능 향상을 위해 Bootstrap 방식을 적용하였다. Bootstrap 및 aggregating방식은 unstable한 모델에서 그 성능이 유효하므로 이의 적용을 위해 먼저 VQ 모델의 bias와 variance를 계산하여 unstable함을 보였다. 화자인식 실험은 TIMIT Database를 사용하여 수행하였고 실험결과 높은 인식율 향상을 확인하였다. 또한 적은 훈련 데이터 환경에서도 좋은 인식율을 갖는 것으로 나타났다.

  • PDF

비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates)

  • 김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.101-105
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning Vector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 LVQ 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기본의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.

  • PDF

영상의 복잡도 특징을 기준으로 양자화 왜곡에 대한 최소 인지 왜곡 모델 (Just noticeable quantization blur model based on the DCT complexity feature of the image)

  • 기세환;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.70-72
    • /
    • 2016
  • 본 논문에서는 기존의 인지적 영상 압축 기법에 사용되었던 Just Noticeable Distortion(JND) 모델이 압축과정에서 생기는 왜곡인 양자화 왜곡에 적합하지 않는 다는 것을 보이고, 그 한계점을 해결하기 위하여 Just Noticeable Blur(JNB)의 개념을 적용하여 영상 압축에 적합한 모델을 제시하였다. 주파수 공간에서 영상의 복잡도 특징을 나타내는 Spectral Contras Index(SCI) 값을 사용해서 영상의 DCT 블록별 JNB 를 추정하고 이를 기반으로 영상의 DCT 계수 값을 감소시켜 최신의 DCT 기반 JND 를 적용한 인지적 압축 영상에 비해 더 낮은 PSNR 을 가지면서 왜곡도 인지되지 않는 영상을 얻을 수 있었다. 새롭게 제시한 모델을 적용하면 인지적 영상압축에서 기존의 방법보다 더 낮은 비트율로 유사한 인지적 화질 성능을 발휘할 것으로 예상된다.

  • PDF

VQ와 Multi-layer perceptron을 이용한 단모음 인식에 관한 연구 (A Study on Single Vowels Recognition using VQ and Multi-layer Perceptron)

  • 안태옥;이상훈;김순협
    • 한국음향학회지
    • /
    • 제12권1호
    • /
    • pp.55-60
    • /
    • 1993
  • 본 논문은 불특정 화자의 단모음 인식에 관한 연구로써, VQ(Vectro Quantization)와 MLP(multi-layer perceptron)에 의한 음성 인식 방법을 제안한다. 이 방법은 VQ codebook을 구하고 이를 이용해서 관측열(observation sequence)을 구해각 codeword가 데이터로부터 가질 수 있는 확률값을 계산하여 이 값을 신경 회로망의 입력으로 사용하는 방법이다. 인식 대상으로는 한국어 단모음을 선정하였으며 10명의 남성 화자가 8개의 단모음을 10번씩 발음한 것으로 시스템의 효율성을 알아보기 위해 VQ/HMM(hidden markov model)에 의한 인식과 비교 실험한다. 실험 결과에 의하면, 시스템의 단순성에도 불구하고 학습능력애 뛰어난 관계로 VQ/HMM보다 VQ와 MLP에 의한 음성 인식률이 향상됨을 보여준다.

  • PDF

패턴 인식을 위한 감독학습을 사용한 IAFC( Integrated Adaptive Fuzzy Clustering)모델 (IAFC(Integrated Adaptive Fuzzy Clustering)Model Using Supervised Learning Rule for Pattern Recognition)

  • 김용수;김남진;이재연;지수영;조영조;이세열
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.153-157
    • /
    • 2004
  • 본 논문은 패턴인식을 위해 사용할 수 있는 감독학습을 이용한 supervised IAFC neural network 1과 supervised IAFC neural network 2를 제안하였다 Supervised IAFC neural network 1과 supervised IAFC neural network 2는 LVQ(Learning Vector Quantization)를 퍼지화한 새로운 퍼지 학습법칙을 사용하고 있다. 이 새로운 퍼지 학습 법칙은 기존의 학습률 대신에 퍼지화된 학습률을 사용하고 있는데, 이 퍼지화된 학습률은 조건 확률을 퍼지화 한 것에 근간을 두고 있다. Supervised IAFC neural network 1과 supervised IAFC neural network 2의 성능과 오류역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, 실험결과 supervised IAFC neural network 2 의 성능이 오류역전파 신경회로망의 성능보다 우수함이 입증되었다.

  • PDF

클래스간의 거리를 고려한 학습법칙을 사용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using A Learning Rule Considering the Distances Between Classes)

  • 김용수;백용선;이세열
    • 한국지능시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.460-465
    • /
    • 2006
  • 본 논문은 입력 벡터와 클래스들의 대표값들간의 유클리디안 거리들을 사용한 새로운 퍼지 학습법칙을 제안한다. 이 새로운 퍼지 학습을 supervised IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망 4에 적용하였다. 이 신경회로망은 안정성을 유지하면서도 유연성을 가지고 있다. iris 데이터를 사용하여 테스트한 결과 supervised IAFC 신경회로망 4는 오류역전파 신경회로망과 LVQ 알고리듬보다 성능이 우수하였다.

잡음 환경하에서 환경 군집화를 이용한 고속화자 적응 (Fast Speaker Adaptation in Noisy Environment using Environment Clustering)

  • 김영국;송화전;김형순
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2007년도 한국음성과학회 공동학술대회 발표논문집
    • /
    • pp.33-36
    • /
    • 2007
  • In this paper, we investigate a fast speaker adaptation method based on eigenvoice in several noisy environments. In order to overcome its weakness against noise, we propose a noisy environment clustering method which divides the noisy adaptation utterances into utterance groups with similar environments by the vector quantization based clustering using a cepstral mean as a feature vector. Then each utterance group is used for adaptation to make an environment dependent model. According to our experiment, we obtained 19-37 % relative improvement in error rate compared with the simultaneous speaker adaptation and environmental compensation method

  • PDF

국소 극대-극소점 간의 간격정보를 이용한 시간영역에서의 음성인식을 위한 파라미터 추출 방법 (A Time-Domain Parameter Extraction Method for Speech Recognition using the Local Peak-to-Peak Interval Information)

  • 임재열;김형일;안수길
    • 전자공학회논문지B
    • /
    • 제31B권2호
    • /
    • pp.28-34
    • /
    • 1994
  • In this paper, a new time-domain parameter extraction method for speech recognition is proposed. The suggested emthod is based on the fact that the local peak-to-peak interval, i.e., the interval between maxima and minima of speech waveform is closely related to the frequency component of the speech signal. The parameterization is achieved by a sort of filter bank technique in the time domain. To test the proposed parameter extraction emthod, an isolated word recognizer based on Vector Quantization and Hidden Markov Model was constructed. As a test material, 22 words spoken by ten males were used and the recognition rate of 92.9% was obtained. This result leads to the conclusion that the new parameter extraction method can be used for speech recognition system. Since the proposed method is processed in the time domain, the real-time parameter extraction can be implemented in the class of personal computer equipped onlu with an A/D converter without any DSP board.

  • PDF

낮은 연산 부담을 갖는 MPEG-4 AAC 인코더 개발에 관한 연구 (Development of an MPEG-4 AAC encoder of low implementation complexity)

  • 김병일;김동환;장태규;장흥엽
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2467-2470
    • /
    • 2003
  • This paper presents a new structure of MPEG-4 AAC encoder. The proposed encoder directly shapes quantization noise distribution according to the energy distribution curve and thereafter performs adjustment of the offset level of the noise distribution to meet the given bit rate. The direct noise shaping and the bit rate matching scheme of the proposed encoder algorithm significantly alleviate the problem of conventional encoder's processing burden related with the employment of the precise psychoacoustic model and iteration intensive quantizer. The encoder algorithm is implemented on ARM processor with fixed-feint arithmetic operations. The audio quality of the implemented system is observed comparable to those of commercially available encoders, white the complexity of the implementation is drastically reduced in comparison to the conventional encoder systems.

  • PDF