• Title/Summary/Keyword: Model Feature Map

Search Result 165, Processing Time 0.028 seconds

Development of a SLAM System for Small UAVs in Indoor Environments using Gaussian Processes (가우시안 프로세스를 이용한 실내 환경에서 소형무인기에 적합한 SLAM 시스템 개발)

  • Jeon, Young-San;Choi, Jongeun;Lee, Jeong Oog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1098-1102
    • /
    • 2014
  • Localization of aerial vehicles and map building of flight environments are key technologies for the autonomous flight of small UAVs. In outdoor environments, an unmanned aircraft can easily use a GPS (Global Positioning System) for its localization with acceptable accuracy. However, as the GPS is not available for use in indoor environments, the development of a SLAM (Simultaneous Localization and Mapping) system that is suitable for small UAVs is therefore needed. In this paper, we suggest a vision-based SLAM system that uses vision sensors and an AHRS (Attitude Heading Reference System) sensor. Feature points in images captured from the vision sensor are obtained by using GPU (Graphics Process Unit) based SIFT (Scale-invariant Feature Transform) algorithm. Those feature points are then combined with attitude information obtained from the AHRS to estimate the position of the small UAV. Based on the location information and color distribution, a Gaussian process model is generated, which could be a map. The experimental results show that the position of a small unmanned aircraft is estimated properly and the map of the environment is constructed by using the proposed method. Finally, the reliability of the proposed method is verified by comparing the difference between the estimated values and the actual values.

Feature Space Analysis of Human Gait Dynamics in Single View Video

  • Sin, Bong-Kee;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1778-1785
    • /
    • 2010
  • This paper proposes a new video-based method of analyzing human gait which is a highly variable dynamic process. It captures a human gait of varying directions as a trajectory in the phase space. The proposed method includes two options of a stochastic process model and a self-organizing feature map as the tool of feature space representation and analysis. Test results show that the model is highly intuitive and we believe it can contribute to our understanding of human activity as well as gait behavior.

Automatic detection of the optimal ejecting direction based on a discrete Gauss map

  • Inui, Masatomo;Kamei, Hidekazu;Umezu, Nobuyuki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.48-54
    • /
    • 2014
  • In this paper, the authors propose a system for assisting mold designers of plastic parts. With a CAD model of a part, the system automatically determines the optimal ejecting direction of the part with minimum undercuts. Since plastic parts are generally very thin, many rib features are placed on the inner side of the part to give sufficient structural strength. Our system extracts the rib features from the CAD model of the part, and determines the possible ejecting directions based on the geometric properties of the features. The system then selects the optimal direction with minimum undercuts. Possible ejecting directions are represented as discrete points on a Gauss map. Our new point distribution method for the Gauss map is based on the concept of the architectural geodesic dome. A hierarchical structure is also introduced in the point distribution, with a higher level "rough" Gauss map with rather sparse point distribution and another lower level "fine" Gauss map with much denser point distribution. A system is implemented and computational experiments are performed. Our system requires less than 10 seconds to determine the optimal ejecting direction of a CAD model with more than 1 million polygons.

Development of a sonar map based position estimation system for an autonomous mobile robot operating in an unknown environment (미지의 영역에서 활동하는 자율이동로봇의 초음파지도에 근거한 위치인식 시스템 개발)

  • 강승균;임종환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1589-1592
    • /
    • 1997
  • Among the prerequisite abilities (perception of environment, path planning and position estimation) of an autonomous mobile robot, position estimation has been seldom studied by mobile robot researchers. In most cases, conventional positioin estimation has been performed by placing landmarks or giving the entrire environmental information in advance. Unlikely to the conventional ones, the study addresses a new method that the robot itself can select distinctive features in the environment and save them as landmarks without any a priori knowledge, which can maximize the autonomous behavior of the robot. First, an orjentaion probaility model is applied to construct a lcoal map of robot's surrounding. The feature of the object in the map is then extracted and the map is saved as landmark. Also, presented is the position estimation method that utilizes the correspondence between landmarks and current local map. In dong this, the uncertainty of the robot's current positioin is estimated in order to select the corresponding landmark stored in the previous steps. The usefulness of all these approaches are illustrated with the results porduced by a real robot equipped with ultrasonic sensors.

  • PDF

Texture Segmentation Using Statistical Characteristics of SOM and Multiscale Bayesian Image Segmentation Technique (SOM의 통계적 특성과 다중 스케일 Bayesian 영상 분할 기법을 이용한 텍스쳐 분할)

  • Kim Tae-Hyung;Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.43-54
    • /
    • 2005
  • This paper proposes a novel texture segmentation method using Bayesian image segmentation method and SOM(Self Organization feature Map). Multi-scale wavelet coefficients are used as the input of SOM, and likelihood and a posterior probability for observations are obtained from trained SOMs. Texture segmentation is performed by a posterior probability from trained SOMs and MAP(Maximum A Posterior) classification. And the result of texture segmentation is improved by context information. This proposed segmentation method shows better performance than segmentation method by HMT(Hidden Markov Tree) model. The texture segmentation results by SOM and multi-sclae Bayesian image segmentation technique called HMTseg also show better performance than by HMT and HMTseg.

Feature Recognition for Digitizing Path Generation in Reverse Engineering (역공학에서 측정경로생성을 위한 특징형상 인식)

  • Kim Seung Hyun;Kim Jae Hyun;Park Jung Whan;Ko Tae Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.100-108
    • /
    • 2004
  • In reverse engineering, data acquisition methodology can generally be categorized into contacting and non-contacting types. Recently, researches on hybrid or sensor fusion of the two types have been increasing. In addition, efficient construction of a geometric model from the measurement data is required, where considerable amount of user interaction to classify and localize regions of interest is inevitable. Our research focuses on the classification of each bounded region into a pre-defined feature shape fer a hybrid measuring scheme, where the overall procedures are described as fellows. Firstly, the physical model is digitized by a non-contacting laser scanner which rapidly provides cloud-of-points data. Secondly, the overall digitized data are approximated to a z-map model. Each bounding curve of a region of interest (featured area) can be 1.aced out based on our previous research. Then each confined area is systematically classified into one of the pre-defined feature types such as floor, wall, strip or volume, followed by a more accurate measuring step via a contacting probe. Assigned to each feature is a specific digitizing path topology which may reflect its own geometric character. The research can play an important role in minimizing user interaction at the stage of digitizing path planning.

Face Recognition Network using gradCAM (gradCam을 사용한 얼굴인식 신경망)

  • Chan Hyung Baek;Kwon Jihun;Ho Yub Jung
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.9-14
    • /
    • 2023
  • In this paper, we proposed a face recognition network which attempts to use more facial features awhile using smaller number of training sets. When combining the neural network together for face recognition, we want to use networks that use different part of the facial features. However, the network training chooses randomly where these facial features are obtained. Other hand, the judgment basis of the network model can be expressed as a saliency map through gradCAM. Therefore, in this paper, we use gradCAM to visualize where the trained face recognition model has made a observations and recognition judgments. Thus, the network combination can be constructed based on the different facial features used. Using this approach, we trained a network for small face recognition problem. In an simple toy face recognition example, the recognition network used in this paper improves the accuracy by 1.79% and reduces the equal error rate (EER) by 0.01788 compared to the conventional approach.

Feature Map Construction using Orientation Information in a Grid Map (그리드지도의 방향정보 이용한 형상지도형성)

  • 송도성;강승균;임종환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1496-1499
    • /
    • 2004
  • The paper persents an efficient method of extracting line segment in a grid map. The grid map is composed of 2-D grids that have both the occupancy and orientation probabilities based on the simplified Bayesian updating model. The probabilities and orientations of cells in the grid map are continuously updated while the robot explorers to their values. The line segments are, then, extracted from the clusters using Hough transform methods. The eng points of a line segment are evaluated from the cells in each cluster, which is simple and efficient comparing to existing methods. The proposed methods are illustrated by sets of experiments in an indoor environment.

  • PDF

Position Estimation Using Magnetic Field Map (자기장 지도를 이용한 위치 추정)

  • Kim, Han-Sol;Moon, Woo-Sung;Seo, Woo-Jin;Baek, Kwang-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.290-298
    • /
    • 2013
  • Geomagnetic is refracted by building's wall and pillar. Therefore refracted geomagnetic is able to be used as feature point. In a specific space, a mobile device that is equipped with magnetic sensor array measures 3-axis magnetic field for each point. Magnetic field map is acquired by collecting the every sample point in the magnetic field. The measured magnetic field must be calibrated, because each magnetic sensor has a distortion. For this reason, sensor distortion model and sensor calibration method are proposed in this paper. Magnetic field that is measured by mobile device matches magnetic field map. Result of the matching is used for position estimation. This paper implements hardware system for position estimation method using magnetic field map.

Far Distance Face Detection from The Interest Areas Expansion based on User Eye-tracking Information (시선 응시 점 기반의 관심영역 확장을 통한 원 거리 얼굴 검출)

  • Park, Heesun;Hong, Jangpyo;Kim, Sangyeol;Jang, Young-Min;Kim, Cheol-Su;Lee, Minho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.113-127
    • /
    • 2012
  • Face detection methods using image processing have been proposed in many different ways. Generally, the most widely used method for face detection is an Adaboost that is proposed by Viola and Jones. This method uses Haar-like feature for image learning, and the detection performance depends on the learned images. It is well performed to detect face images within a certain distance range, but if the image is far away from the camera, face images become so small that may not detect them with the pre-learned Haar-like feature of the face image. In this paper, we propose the far distance face detection method that combine the Aadaboost of Viola-Jones with a saliency map and user's attention information. Saliency Map is used to select the candidate face images in the input image, face images are finally detected among the candidated regions using the Adaboost with Haar-like feature learned in advance. And the user's eye-tracking information is used to select the interest regions. When a subject is so far away from the camera that it is difficult to detect the face image, we expand the small eye gaze spot region using linear interpolation method and reuse that as input image and can increase the face image detection performance. We confirmed the proposed model has better results than the conventional Adaboost in terms of face image detection performance and computational time.