• Title/Summary/Keyword: Model Efficiency

Search Result 9,145, Processing Time 0.04 seconds

Efficiency Optimal Design of a Brushless DC Motor Considering the Magnetization Direction of Permanent Magnet (영구자석의 착자방향을 고려한 브러시리스DC 전동기의 효율 최적화 설계)

  • Song, Jeong-Hyun;Kim, Byung-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.241-247
    • /
    • 2011
  • This paper is intended to improve efficiency of two-phase BLDC motor using analytical and statistical methods, and then the stability of the starting for the designed model is investigated. The characteristics of the motor according to magnetization directions of permanent magnet are analyzed through the analytical method, and design variables that affect the efficiency are selected. Preliminary optimal design is performed using the analytical method with the design variable. The RSM (Response Surface Method) based on the FEA (Finite Element Analysis) is applied to complement errors of the analytical method. As a result, the optimal design is determined. Finally, the stability of the starting for the optimal designed model is evaluated by analyzing cogging torque, and it is verified through the FEA.

Optimal Design of Induction Motor Rotor Slot Shape for Electric Vehicle by Response Surface Method (반응표면법을 이용한 전기자동차 구동용 유도전동기의 회전자 슬롯형상 최적설계)

  • Jeon, Kyung-Won;Hahn, Sung-Chin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.58-66
    • /
    • 2011
  • In this paper, the starting torque and efficiency characteristics of the induction motor (IM) for the electric vehicle (EV) are improved by changing the slot shapes of squirrel cage. The initial model of the induction motor is designed by the loading distribution method (LDM), and then the rotor with squirrel cage of NEMA class A is selected to optimize the slot shape by response surface method(RSM). The design variables of rotor slot shape are obtained by the RSM. Starting torque and efficiency were calculated by the equivalent circuit method. As a result, starting torque and efficiency of the optimized model shows good performance through whole-speed range.

A study on the development of the high efficiency condensing heat exchanger (고효율 응축형 열교환기 개발에 관한 연구)

  • Lee, Geum-Bae;Park, Sang-Il;Park, Jun-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.589-601
    • /
    • 1997
  • A computer simulation program of a high efficiency condensing heat exchanger is developed. The flue gas flows outside bare tube bundles both in strong cross flow and in weak counter flow and the cooling water inside the tubes. Condensing heat exchangers achieve high efficiency by reducing flue-gas temperatures to a level at which most of the water vapor in the flue gas is condensed and the latent heat associated with phase change of the water is recovered. The computer model has been verified by comparison with measured data. To verify the model, heat transfer coefficient was adjusted, along with the mass transfer diffusion coefficient and pressure drop coefficient, to achieve agreement between predicted and measured data. The efficiencies of heat exchanger increase 2.3 ~ 8.1% by condensations of 6.3 ~ 62.6% of the water vapor in the flue gas.

The Efficiency Optimization Control of an Indirect Vector-Controlled Induction Motor Drive (간접벡터제어 유도전동기의 효율 최적화 운전)

  • Choi, Jin-Ho;Shin, Jae-Hae;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.352-354
    • /
    • 2000
  • The induction motor is a high-efficiency machine when working close to its rated operation point. This paper uses a simple induction motor model that includes iron losses. The model, which only requires the knowledge of conventional induction motor parameters, is referred to a field-oriented frame. At steady-state light-load condition the minimum point of the input power can be found with the condition that it is possible to obtain the same torque with different combinations of flux and current values. Using the minimum point. the drive system with the proposed efficiency optimization controller can be controlled easily. Simulation and experimental results show the effectiveness of the control strategy proposed for an induction motor drive.

  • PDF

Analysis of Pricing and Efficiency Control Strategy between Online and Offline Marketing Channels (Online 과 Offline 마케팅 채널 간의 가격경쟁 및 효율성 통제전략 분석)

  • Cho, Hyung-Rae;Yu, Jung-Sub;Cha, Chun-Nam;Lim, Sang-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.2
    • /
    • pp.181-189
    • /
    • 2001
  • The proliferation of the Internet and related technologies and applications has led to a new form of market place known as the electronic store. In this paper, we study competition between two shopping channels, an electronic store and traditional retailers. Based on the circular spatial market model, we derive the Nash and Stackelberg equilibria as a function of the efficiency of the electronic store. The result shows that the Stackelberg equilibrium is always superior to the Nash equilibrium for both channels. It is also shown that, in some cases, the electronic store has incentive to decrease its efficiency to gain more profit.

  • PDF

Structural Dynamic Modification Using substructure Response Function Sensitivity Method(SRFSM) (부분구조응답함수감소법을 이용한 동적구조변경)

  • Ji, Tae-Han;Park, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3782-3791
    • /
    • 1996
  • A great deal of effert has been invested in upgrading the performance and the efficiency of mechanical structures. Using experimental modal analysis(EMA) or finite element analysis(FEA) data of mechanical structures, this performance and efficiency can be effectively evaluated. In order to analyze complex structures such as automobiles and aircraft, for the sake of computing efficiency, the dynamic substructuring techniques that allow to predict the dynamic behavior of a structure based on that of the composing structures, are widely used. By llinking a modal model obtained from EMA and an analytical model obtained from FEA, the best conditioned structures can be desinged. In this paper, a new algorithm for structural dynamic modification-SRFSM (substructure response function sensitivity method) is proposed by linking frequency responce function synthesis and response function sensitivity. A mehtod to obtain response function sensitivity using direct derivative of mechanical impedance, is also used.

Deformation Capacity of Steel Moment Connections with RHS Column (각형강관 기둥을 가진 철골모멘트 접합부의 변형능력)

  • Kim, Young-Ju;Oh, Sang-Hoon;Ryu, Hong-Sik
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.249-258
    • /
    • 2006
  • In this paper, deformation capacity of steel moment connections with RHS column was investigated. Initially, non-linear finite element analysis of five bate steel beam models was conducted. The models were designed to have different detail at their beam-to-column connection, so that the flexural moment capacity was different respectively. Analysis results showed 4hat the moment transfer efficiency of the analytical model with RHS-column was poor when comparing to model with WF(Wide flnage)-column due to out-of-plane deformation of the RHS-column flange. The presence of scallop and thin plate of RHS column was also a reason of the decrease of moment transfer efficiency, which would result in a potential fracture of tile steel beam-to-column connections. Further test on beam-to-column connections with RHS column revealed that the moment transfer efficiency of a beam web decreased due to the out-of-plane deformation of column flange, which led to premature failure of the connection.

  • PDF

Efficiency Improvement for Building Integrated Photovoltaic Applied to High-rise Building (고층 빌딩에 적용되는 빌딩통합형 태양광패널 효율성 개선방안)

  • Lee, Do-Hyun;Ahn, Ihn-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.71-78
    • /
    • 2022
  • With the advent of cutting-edge technology, renewable energy is significantly considered as alternative resources to supply electric power. However, many barriers such as energy intermittency, high initial installation cost, and low-efficiency generation challenged building new infrastructure with clean energy. Efforts reducing greenhouse gas emissions and reliance on fossil fuels resulted in the decentralization of power generation like distributed energy resource (DER). This paper is to introduce and evaluate the feasibility of building-integrated photovoltaics (BIPV) in a high-rise building in Ulsan. To optimize BIPV, a variety of methods to minimize efficiency decrease and maximize electric power generation after installing BIPV on the building's facade are suggested. The variables causing power losses are analyzed. By utilizing System Advisor Model (SAM), actual power generated from solar panels is measured by Thin-film PV, Mono-crystalline PV, and Poly-crystalline PV.

A STUDY ON INTANGIBLE ASSET EVALUATION MODELING FOR CONSTRUCTION MANAGEMENT EFFICIENCY

  • Soyean Lim;Hyun-Chul Lee;Woo-Sung Yoon;Seong-Seok Go
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.876-882
    • /
    • 2009
  • With overall opening of global construction market by World Trade Organization (WTO) agreements, importance of management efficiency of construction industry which considers both tangible and intangible assets is recently being recognized in our nation. That is, efforts for reinforcement of competitiveness must be placed through maximization of values of internal and external intangible assets of construction industry such as management innovation, information, investment in technology and R&D and intellectual property. Accordingly in this study, evaluation criteria for intangible assets of construction industry were investigated and classified. Using such criteria, evaluation index and model were established based on the degree of importance of each criterion. The purpose of this study is to review importance of intangible assets in terms of competitiveness and management efficiency of construction industry and to provide basic data for establishment of intangible assets and revitalization of investment.

  • PDF

Impact of Hull Condition and Propeller Surface Maintenance on Fuel Efficiency of Ocean-Going Vessels

  • Tien Anh Tran;Do Kyun Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.181-189
    • /
    • 2023
  • The fuel consumption of marine diesel engines holds paramount importance in contemporary maritime transportation and shapes energy efficiency strategies of ocean-going vessels. Nonetheless, a noticeable gap in knowledge prevails concerning the influence of ship hull conditions and propeller roughness on fuel consumption. This study bridges this gap by utilizing artificial intelligence techniques in Matlab, particularly convolutional neural networks (CNNs) to comprehensively investigate these factors. We propose a time-series prediction model that was built on numerical simulations and aimed at forecasting ship hull and propeller conditions. The model's accuracy was validated through a meticulous comparison of predictions with actual ship-hull and propeller conditions. Furthermore, we executed a comparative analysis juxtaposing predictive outcomes with navigational environmental factors encompassing wind speed, wave height, and ship loading conditions by the fuzzy clustering method. This research's significance lies in its pivotal role as a foundation for fostering a more intricate understanding of energy consumption within the realm of maritime transport.