• 제목/요약/키워드: Model Based Segmentation

검색결과 623건 처리시간 0.023초

MR 영상에서 중간형상정보 생성을 통한 활성형상모델 기반 반월상 연골 자동 분할 (Automatic Segmentation of the meniscus based on Active Shape Model in MR Images through Interpolated Shape Information)

  • 김민정;유지현;홍헬렌
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권11호
    • /
    • pp.1096-1100
    • /
    • 2010
  • 본 논문에서는 MR 영상에서 중간형상정보를 이용한 활성형상모델 기반의 반월상 연골 자동 분할 기법을 제안한다. 첫째, 훈련집합 내의 형상 변형을 반영하기 위해 반월상 연골 통계형상모델을 생성한다. 둘째, 큰 변형을 갖는 반월상 연골의 견고한 분할을 위해 유사도에 따른 가중치 기법을 이용하여 중간형상정보 생성 기법을 제안한다. 마지막으로 활성형상모탤 적합을 통해 반월상 연골 자동 분할을 수행한다. 제안 방법의 평가를 위하여 육안평가와 정확성 평가 그리고 수행시간을 측정하였다. 정확성 평가는 자동 분할과 반자동 분할 결과간의 평균거리차이를 측정하였고 이를 컬러맵으로 표현하였다. 실험 결과 평균거리차이는 내측 반월상 연골은 $0.54{\pm}0.16mm$, 외측 반월상 연골은 $0.73{\pm}0.39mm$으로 측정되었고, 수행시간은 평균 4.87초로 측정되었다.

Automated Facial Wrinkle Segmentation Scheme Using UNet++

  • Hyeonwoo Kim;Junsuk Lee;Jehyeok, Rew;Eenjun Hwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권8호
    • /
    • pp.2333-2345
    • /
    • 2024
  • Facial wrinkles are widely used to evaluate skin condition or aging for various fields such as skin diagnosis, plastic surgery consultations, and cosmetic recommendations. In order to effectively process facial wrinkles in facial image analysis, accurate wrinkle segmentation is required to identify wrinkled regions. Existing deep learning-based methods have difficulty segmenting fine wrinkles due to insufficient wrinkle data and the imbalance between wrinkle and non-wrinkle data. Therefore, in this paper, we propose a new facial wrinkle segmentation method based on a UNet++ model. Specifically, we construct a new facial wrinkle dataset by manually annotating fine wrinkles across the entire face. We then extract only the skin region from the facial image using a facial landmark point extractor. Lastly, we train the UNet++ model using both dice loss and focal loss to alleviate the class imbalance problem. To validate the effectiveness of the proposed method, we conduct comprehensive experiments using our facial wrinkle dataset. The experimental results showed that the proposed method was superior to the latest wrinkle segmentation method by 9.77%p and 10.04%p in IoU and F1 score, respectively.

An improved fuzzy c-means method based on multivariate skew-normal distribution for brain MR image segmentation

  • Guiyuan Zhu;Shengyang Liao;Tianming Zhan;Yunjie Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권8호
    • /
    • pp.2082-2102
    • /
    • 2024
  • Accurate segmentation of magnetic resonance (MR) images is crucial for providing doctors with effective quantitative information for diagnosis. However, the presence of weak boundaries, intensity inhomogeneity, and noise in the images poses challenges for segmentation models to achieve optimal results. While deep learning models can offer relatively accurate results, the scarcity of labeled medical imaging data increases the risk of overfitting. To tackle this issue, this paper proposes a novel fuzzy c-means (FCM) model that integrates a deep learning approach. To address the limited accuracy of traditional FCM models, which employ Euclidean distance as a distance measure, we introduce a measurement function based on the skewed normal distribution. This function enables us to capture more precise information about the distribution of the image. Additionally, we construct a regularization term based on the Kullback-Leibler (KL) divergence of high-confidence deep learning results. This regularization term helps enhance the final segmentation accuracy of the model. Moreover, we incorporate orthogonal basis functions to estimate the bias field and integrate it into the improved FCM method. This integration allows our method to simultaneously segment the image and estimate the bias field. The experimental results on both simulated and real brain MR images demonstrate the robustness of our method, highlighting its superiority over other advanced segmentation algorithms.

기계학습을 통한 복부 CT영상에서 요로결석 분할 모델 및 AI 웹 애플리케이션 개발 (Urinary Stones Segmentation Model and AI Web Application Development in Abdominal CT Images Through Machine Learning)

  • 이충섭;임동욱;노시형;김태훈;박성빈;윤권하;정창원
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권11호
    • /
    • pp.305-310
    • /
    • 2021
  • 의료분야 인공지능 기술이 분석과 알고리즘 개발에 중점을 두었으나 점차 제품으로 서비스하기 위한 Web 애플리케이션 개발로 변화되고 있다. 본 연구는 복부 CT 영상에서 요로결석(Urinary Stone) 분할모델과 이를 기반으로 한 인공지능 웹 애플리케이션에 대해 기술한다. 이를 구현하기 위해 의료영상 분야에서 이미지 분할을 목적으로 제안된 End-to-End 방식의 Fully-Convolutional Network 기반 모델인 U-Net을 사용하여 모델을 개발하였다. 그리고 Python 기반의 Flask라는 마이크로 웹 프레임워크를 사용하여 AWS 클라우드 기반 웹 애플리케이션으로 개발하였다. 끝으로 모델 서빙으로 요로결석 분할모델이 예측한 결과를 인공지능 웹 애플리케이션 서비스 수행 결과로 보인다. 제안한 AI 웹 애플리케이션 서비스가 선별 검사에 활용되기를 기대한다.

Performance Comparison Between the Envelope Peak Detection Method and the HMM Based Method for Heart Sound Segmentation

  • Jang, Hyun-Baek;Chung, Young-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제28권2E호
    • /
    • pp.72-78
    • /
    • 2009
  • Heart sound segmentation into its components, S1, systole, S2 and diastole is the first step of analysis and the most important part in the automatic diagnosis of heart sounds. Conventionally, the Shannon energy envelope peak detection method has been popularly used due to its superior performance in locating S1 and S2. Recently, the HMM has been shown to be quite suitable in modeling the heart sound signal and its use in segmenting the heart sound signal has been suggested with some success. In this paper, we compared the two methods for heart sound segmentation using a common database. Experimental tests carried out on the 4 different types of heart sound signals showed that the segmentation accuracy relative to the manual segmentation was 97.4% in the HMM based method which was larger than 91.5% in the peak detection method.

직물 이미지 결함 탐지를 위한 딥러닝 기술 연구: 트랜스포머 기반 이미지 세그멘테이션 모델 실험 (Deep Learning Models for Fabric Image Defect Detection: Experiments with Transformer-based Image Segmentation Models)

  • 이현상;하성호;오세환
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제32권4호
    • /
    • pp.149-162
    • /
    • 2023
  • Purpose In the textile industry, fabric defects significantly impact product quality and consumer satisfaction. This research seeks to enhance defect detection by developing a transformer-based deep learning image segmentation model for learning high-dimensional image features, overcoming the limitations of traditional image classification methods. Design/methodology/approach This study utilizes the ZJU-Leaper dataset to develop a model for detecting defects in fabrics. The ZJU-Leaper dataset includes defects such as presses, stains, warps, and scratches across various fabric patterns. The dataset was built using the defect labeling and image files from ZJU-Leaper, and experiments were conducted with deep learning image segmentation models including Deeplabv3, SegformerB0, SegformerB1, and Dinov2. Findings The experimental results of this study indicate that the SegformerB1 model achieved the highest performance with an mIOU of 83.61% and a Pixel F1 Score of 81.84%. The SegformerB1 model excelled in sensitivity for detecting fabric defect areas compared to other models. Detailed analysis of its inferences showed accurate predictions of diverse defects, such as stains and fine scratches, within intricated fabric designs.

Eigenvoice 기반 화자가중치 거리측정 방식을 이용한 화자 분할 시스템 (Speaker Segmentation System Using Eigenvoice-based Speaker Weight Distance Method)

  • 최무열;김형순
    • 한국음향학회지
    • /
    • 제31권4호
    • /
    • pp.266-272
    • /
    • 2012
  • 화자 분할 기술은 오디오 데이터로부터 자동적으로 화자 경계 구간을 검출하는 것이다. 화자 분할 방식은 화자에 대한 선행 지식 사용 여부에 따라 거리기반 방식과 모델기반 방식으로 나누어진다. 본 논문에서는 eigenvoice 기반의 화자가중치 거리를 이용한 화자 분할 방식을 도입하고, 이 방식을 대표적인 거리 기반 방식들과 비교한다. 또한, 화자가중치의 거리 측정 함수로 유클리드 거리와 cosine 유사도를 사용하여 화자 분할 성능을 비교하고, eigenvoice 방식에 의해 화자 적응된 모델들 사이의 직접적인 거리를 이용한 화자 분할 방식과의 비교를 통해 화자가중치 거리를 이용한 방식이 계산량면에서 효율적인 점을 검증한다.

개선된 가변형 능동모델을 이용한 흉부 컴퓨터단층영상에서 폐 실질의 분할 (Image Segmentation of Lung Parenchyma using Improved Deformable Model on Chest Computed Tomography)

  • 김창수;최석윤
    • 한국정보통신학회논문지
    • /
    • 제13권10호
    • /
    • pp.2163-2170
    • /
    • 2009
  • 흉부 컴퓨터단층영상에서의 얻어진 폐 영상은 볼륨과 형태 등의 정량적인 정보들로서 진단과 수술 계획 등에 있어서 필연적 정보를 제공한다. 일반적인 영상분할은 이미지를 구성 요소영역이나 목적물에 따라 나누는 방법이다. 그러나 재분할을 하는 단계에서 최종영상은 에너지 최소화를 해결하는 정도에 의존하며, 분할은 응용대상의 관심 영역에서 객체나 물체의 경계에서 정지하게 된다. 가변형 능동모델은 컴퓨터 비젼, 영상처리 분야에서 광범위하게 사용되고 있다. 또한 영역 분할은 현재까지 많은 연구가 되고 있으며, Xu에 의해서 GVF라는 새로운 형태의 외부힘이 제안되고 있다. 본 논문에서 제안하는 알고리듬은 흉부 컴퓨터단층영상에서 실질을 자동 분할하기 위해서 에너지 최소화 방법을 사용하고, 영역분할을 위해 개선된 가변형 능동모델을 제안한다. 알고리듬은 정확한 영역분할을 위해서 기존 방법과 다른 개선된 외부힘을 정의하는 것이다. 임상의 실험은 흉부 컴퓨터단층영상에서 진단에 필요로 하는 폐 실질의 분할이 성공적인 결과를 나타내었다.

후두 내시경 영상에서의 성문 분할 및 성대 점막 형태의 정량적 평가 (Segmentation of the Glottis and Quantitative Measurement of the Vocal Cord Mucosal Morphology in the Laryngoscopic Image)

  • 이선민;오석;김영재;우주현;김광기
    • 한국멀티미디어학회논문지
    • /
    • 제25권5호
    • /
    • pp.661-669
    • /
    • 2022
  • The purpose of this study is to compare and analyze Deep Learning (DL) and Digital Image Processing (DIP) techniques using the results of the glottis segmentation of the two methods followed by the quantification of the asymmetric degree of the vocal cord mucosa. The data consists of 40 normal and abnormal images. The DL model is based on Deeplab V3 architecture, and the Canny edge detector algorithm and morphological operations are used for the DIP technique. According to the segmentation results, the average accuracy of the DL model and the DIP was 97.5% and 94.7% respectively. The quantification results showed high correlation coefficients for both the DL experiment (r=0.8512, p<0.0001) and the DIP experiment (r=0.7784, p<0.0001). In the conclusion, the DL model showed relatively higher segmentation accuracy than the DIP. In this paper, we propose the clinical applicability of this technique applying the segmentation and asymmetric quantification algorithm to the glottal area in the laryngoscopic images.

CRFNet: Context ReFinement Network used for semantic segmentation

  • Taeghyun An;Jungyu Kang;Dooseop Choi;Kyoung-Wook Min
    • ETRI Journal
    • /
    • 제45권5호
    • /
    • pp.822-835
    • /
    • 2023
  • Recent semantic segmentation frameworks usually combine low-level and high-level context information to achieve improved performance. In addition, postlevel context information is also considered. In this study, we present a Context ReFinement Network (CRFNet) and its training method to improve the semantic predictions of segmentation models of the encoder-decoder structure. Our study is based on postprocessing, which directly considers the relationship between spatially neighboring pixels of a label map, such as Markov and conditional random fields. CRFNet comprises two modules: a refiner and a combiner that, respectively, refine the context information from the output features of the conventional semantic segmentation network model and combine the refined features with the intermediate features from the decoding process of the segmentation model to produce the final output. To train CRFNet to refine the semantic predictions more accurately, we proposed a sequential training scheme. Using various backbone networks (ENet, ERFNet, and HyperSeg), we extensively evaluated our model on three large-scale, real-world datasets to demonstrate the effectiveness of our approach.