• 제목/요약/키워드: Mode vectors

검색결과 138건 처리시간 0.019초

Feasibility study on model-based damage detection in shear frames using pseudo modal strain energy

  • Dehcheshmeh, M. Mohamadi;Hosseinzadeh, A. Zare;Amiri, G. Ghodrati
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.47-56
    • /
    • 2020
  • This paper proposes a model-based approach for structural damage identification and quantification. Using pseudo modal strain energy and mode shape vectors, a damage-sensitive objective function is introduced which is suitable for damage estimation and quantification in shear frames. Whale optimization algorithm (WOA) is used to solve the problem and report the optimal solution as damage detection results. To illustrate the capability of the proposed method, a numerical example of a shear frame under different damage patterns is studied in both ideal and noisy cases. Furthermore, the performance of the WOA is compared with particle swarm optimization algorithm, as one the widely-used optimization techniques. The applicability of the method is also experimentally investigated by studying a six-story shear frame tested on a shake table. Based on the obtained results, the proposed method is able to assess the health of the shear building structures with high level of accuracy.

A New Active Zero State PWM Algorithm for Reducing the Number of Switchings

  • Yun, Sang-Won;Baik, Jae-Hyuk;Kim, Dong-Sik;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.88-95
    • /
    • 2017
  • To reduce common-mode voltage (CMV), various reduced CMV pulse width modulation (RCMV-PWM) algorithms have been proposed, including active zero state PWM (AZSPWM) algorithms, remote state PWM (RSPWM) algorithms, and near state PWM (NSPWM) algorithms. Among these algorithms, AZSPWM algorithms can reduce CMV, but they increase the number of switchings compared to the conventional space vector PWM (CSVPWM). This paper presents a new AZSPWM algorithm for reductions in both the CMV and total number of switchings in BLAC motor drives. Since the proposed AZSPWM algorithm uses only active voltage vectors for motor control, it reduces CMV by 1/3 compared to CSVPWM. The proposed AZSPWM algorithm also reduces the total number of switchings compared to existing AZSPWM algorithms by eliminating the switchings required from one sector to the next. The performance of the proposed algorithm is verified by analyses, simulations, and experimental results.

Enhancement Voiced/Unvoiced Sounds Classification for 3GPP2 SMV Employing GMM (3GPP2 SMV의 실시간 유/무성음 분류 성능 향상을 위한 Gaussian Mixture Model 기반 연구)

  • Song, Ji-Hyun;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • 제45권5호
    • /
    • pp.111-117
    • /
    • 2008
  • In this paper, we propose an approach to improve the performance of voiced/unvoiced (V/UV) decision under background noise environments for the selectable mode vocoder (SMV) of 3GPP2. We first present an effective analysis of the features and the classification method adopted in the SMV. And then feature vectors which are applied to the GMM are selected from relevant parameters of the SMV for the efficient voiced/unvoiced classification. For the purpose of evaluating the performance of the proposed algorithm, different experiments were carried out under various noise environments and yields better results compared with the conventional scheme of the SMV.

A New SVM Method to Reduce Common-Mode Voltage of Five-leg Indirect Matrix Converter Fed Open-End Load Drives

  • Tran, Quoc-Hoan;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.641-652
    • /
    • 2017
  • This paper proposes a cost-effective topology to drive a three-phase open-end load based on a five-leg indirect matrix converter (IMC) and a space vector modulation (SVM) method. By sharing an inverter leg with two load terminals, the proposed topology can reduce the number of power switches when compared to topologies based on a direct matrix converter or a six-leg IMC. The new SVM method uses only the active vectors that do not produce common-mode voltage (CMV), which results in zero CMV across the load phase and significantly reduces the peak value of the CMV at the load terminal. Furthermore, the proposed drive system can increase the voltage transfer ratio up to 1.5 and provide a superior performance in terms of an output line-to-line voltage with a three-level pulse-width modulation waveform. Simulation and experimental results are given to verify the effectiveness of the proposed topology and the new SVM method.

A function space approach to study rank deficiency and spurious modes in finite elements

  • Sangeeta, K.;Mukherjee, Somenath;Prathap, Gangan
    • Structural Engineering and Mechanics
    • /
    • 제21권5호
    • /
    • pp.539-551
    • /
    • 2005
  • Finite elements based on isoparametric formulation are known to suffer spurious stiffness properties and corresponding stress oscillations, even when care is taken to ensure that completeness and continuity requirements are enforced. This occurs frequently when the physics of the problem requires multiple strain components to be defined. This kind of error, commonly known as locking, can be circumvented by using reduced integration techniques to evaluate the element stiffness matrices instead of the full integration that is mathematically prescribed. However, the reduced integration technique itself can have a further drawback - rank deficiency, which physically implies that spurious energy modes (e.g., hourglass modes) are introduced because of reduced integration. Such instability in an existing stiffness matrix is generally detected by means of an eigenvalue test. In this paper we show that a knowledge of the dimension of the solution space spanned by the column vectors of the strain-displacement matrix can be used to identify the instabilities arising in an element due to reduced/selective integration techniques a priori, without having to complete the element stiffness matrix formulation and then test for zero eigenvalues.

Transformerless DGS Control using a Z-source Boost Inverter (Z-원 승압인버터를 이용한 변압기 없는 DGS제어)

  • Park Young-San
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제10권9호
    • /
    • pp.1617-1624
    • /
    • 2006
  • This paper presents system modeling, modified space vector PWM implementation and design of a closed loop controller of the Z-source inverter which consists of L and C components and shoot-through zero vectors for DGS. Zero vector periods of SVPWM utilized to boost DC-link voltage instead of conventional DC/DC converter and transformer. Only two shoot-through vut(nn are used for DC link voltage control during one switching period without loss of non-zero vectors. Discrete time sliding mode controller, robust servomechanism controller are designed to realize fast and no-overshoot current response and a steady state voltage error. Simulation results are shows the effectiveness of the proposed algorithm.

A New Method for Elimination of Zero-Sequence Voltage in Dual Three-Level Inverter Fed Open-End Winding Induction Motors

  • Geng, Yi-Wen;Wei, Chen-Xi;Chen, Rui-Cheng;Wang, Liang;Xu, Jia-Bin;Hao, Shuang-Cheng
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.67-75
    • /
    • 2017
  • Due to the excessive zero-sequence voltage in dual three-level inverter fed open-end winding induction motor systems, zero-sequence circumfluence which is harmful to switching devices and insulation is then formed when operating in a single DC voltage source supplying mode. Traditionally, it is the mean value instead of instantaneous value of the zero-sequence voltage that is eliminated, through adjusting the durations of the operating vectors. A new strategy is proposed for zero-sequence voltage elimination, which utilizes unified voltage modulation and a decoupled SVPWM strategy to achieve two same-sized equivalent vectors for an angle of $120^{\circ}$, generated by two inverters independently. Both simulation and experimental results have verified its efficiency in the instantaneous value elimination of zero-sequence voltage.

Fast Integer-Pel Motion Estimation Based on Statistical Property for H.264/AVC (H.264/AVC를 위한 통계 특성 기반 정수 화소 단위 고속 움직임 예측 기법)

  • Noh, Jin-Young;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제37권8A호
    • /
    • pp.669-678
    • /
    • 2012
  • In this paper, we propose an efficient fast integer-pel motion estimation for H.264/AVC using local statistics of local motion vectors. Using neighboring motion vectors, we define a new statistical property that is used to determine a mode of motion search range of current block. In addition, an adaptive motion search range compensated method that is based on cumulative statistics of previous coded blocks is addressed to solve the problem of the statistical motion search range decision method. Experimental results show that proposed algorithm has the capability to reduce the computational cost over the other methods.

Fast Switching Direct Torque Control Using a Single DC-link Current Sensor

  • Wang, Wei;Cheng, Ming;Wang, Zheng;Zhang, Bangfu
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.895-903
    • /
    • 2012
  • This paper presents a fast switching direct torque control (FS-DTC) using only a single DC-link current sensor. In FS-DTC, six new active voltage complex space vectors (CSVs) are synthesized by the conventional active voltage space vectors (SVs). The corresponding sectors are rotated in the anticlockwise direction by 30 degrees. A selection table is defined to select the CSVs. Based on the "Different Phase Mode", the output sequence of the selected CSV is optimized. Accordingly, a reconstruction method is proposed to acquire the phase currents. The core of the FS-DTC is that all of the three phase currents can be reliably reconstructed during every two sampling periods, which is the result of the fast switching between different phases. The errors between the reconstructed and actual currents are strictly limited in one sampling period. The FS-DTC has the advantages of the standard DTC scheme such as simple structure, quick torque response and robustness. As can be seen in the analysis, the FS-DTC can be thought of as an equivalent standard DTC scheme with 86.6% of the maximum speed, 173.2% of the torque ripple, and 115% of the response time of the torque. Based on a dSPACE DS1103 controller, the FS-DTC is implemented in an induction machine drive system. The results verify the effectiveness of the FS-DTC.

Fast Mode Decision for Spatial Transcoding of H.264/AVC Contents (H.264/AVC 컨텐츠의 공간해상도 트랜스코딩을 위한 고속 모드 결정 방법)

  • Kwon Sang-Gu;Jung Bong-Soo;Jeon Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • 제43권3호
    • /
    • pp.43-53
    • /
    • 2006
  • As wireless network technology has advanced, demands for multimedia contents through mobile environment have tendered to upward. Since network situation is changing every moment and types of user terminals are diverse, it is difficult for a content provider to consider network situation and type of user terminal to provide multimedia contents. As one solution, transcoding techniques have been proposed, but those have much complexity. In this paper, in order to reduce computational complexity, we propose a fast mode decision using input modes, motion vectors, and residual energies which are obtained from input bitstream for 2:1 down-scaling spatial transcoding application. The proposed method reduces processing time in mode decision by restricting possible mode types based on input information. Experimental results show that the proposed method achieves about 2.66 times improvement in encoding time compared to the normal encoding process while the PSNR is degraded by about 0.04dB, and bit-rate is increased by 1.6%.