• Title/Summary/Keyword: Mode reduction

Search Result 1,257, Processing Time 0.027 seconds

A Study on the Guided Wave Mode Conversion using Self-calibrating Technique (자가교정기법에 의한 유도초음파 모드전이에 관한 연구)

  • Park, Jung-Chul;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.206-212
    • /
    • 2000
  • The guided wave mode conversion phenomena were investigated for the NDE of a plate-like structure with thickness variation. The ratios of reflection and transmission (R/T) were measured via the self-calibrating procedure which allows us to obtain experimental guided wave data in a more reliable way regardless of the coupling uncertainty between transducer & specimen. The results on R/T could be used to determine the thickness reduction of the structure. It was shown that not only the incident modes but also the converted ones need to be considered in the self-calibrating guided wave inspection to extract a reasonable correlation between experimental data & the thickness variation. Through this study, the potential of guided wave inspection as a quantitative NDE technique was explored based on the combined concept of self-calibration & multi-mode conversion in guided wave scattering problems.

  • PDF

Study on Subcritical Water Degradation of RDX Contaminated Soil in Batch and Dynamic Mode (배치형과 연속흐름형에 의한 토양 중 RDX의 아임계 분해특성 비교연구)

  • Choi, Jae-Heon;Lee, Hwan;Lee, Cheol-Hyo;Kim, Ju-Yup;Park, Jeong-Hun;Jo, Young-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.95-102
    • /
    • 2015
  • The purpose of this study is to compare the degradation characteristics by subcritical water of RDX contaminated soil using batch mode and dynamic mode devices. First, upon application of RDX contaminated soil, RDX treatment efficiency was increased with increasing the temperature in both modes. At 150℃, the treatment efficiency was 99.9%. RDX degradation efficiency got higher with lower ratio of solid to liquid. However, the treatment efficiency in the dynamic mode tended to be decreased at a certain ratio of solid to liquid or lower. The treatment efficiency was increased when it took longer time for the reactions in both modes. As the results of analysis on concentration of treated water after subcritical water degradation, the RDX recovery rate of dynamic and batch modes at 150℃ was 10.5% and 1.5%, respectively. However, both modes showed very similar recovery rates at 175℃ or higher. RDX degradation products were analyzed in treated water after it was treated with subcritical water. According to the results, RDX degradation mechanism was mostly oxidation reaction and reduction reaction was partially involved. Therefore, it suggested that most of RDX in soil was degraded by oxidation of subcritical water upon extraction. According to this result, it was found that both batch and dynamic modes were very effectively applied in the treatment of explosive contaminated soil.

Sub-Sampled Pixels based Fast Mode Selection Algorithm for Intra Prediction in H.264/AVC (H.264/AVC 화면 내 예측을 위한 서브 샘플링 된 화소 기반 고속 모드 선택 기법)

  • Kim, Young-Joon;Kim, Won-Kyun;Jung, Dong-Jin;Jeong, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.471-479
    • /
    • 2012
  • Intra prediction is one of the significant techniques in H.264/AVC reference software; however, it has heavy computational complexity. In order to solve this problem, many fast algorithms have been proposed. In this paper, we propose a fast intra mode decision algorithm which predicts the edge direction of the current block using sub-sampled pixels to reduce high computational complexity of the H.264/AVC encoder. The proposed algorithm shows that it not only improves the coding performance but also reduces the computational complexity of the H.264/AVC encoder compared to previous algorithms. The experimental results show that the proposed algorithm achieves the encoding time reduction of 75.93% on an average with slight peak signal-to-noise ratio (PSNR) drop and bit-rate increment.

Fast motion estimation and mode decision for variable block sizes motion compensation in H.264 (H.264의 가변 블록 움직임 보상을 위한 고속 움직임 벡터 탐색 및 모드 결정법)

  • 이제윤;최웅일;전병우;석민수
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.4
    • /
    • pp.275-285
    • /
    • 2003
  • The now video coding standard H.264 employs variable block size motion compensation, multiple references, and quarter-pel motion vector accuracy. These techniques are key features to accomplish higher coding gain, however, at the same time main factors that increase overall computational complexity. Therefore, in order to apply H.264 to many applications, key techniques are requested to improve their speed. For this reason, we propose a fast motion estimation which is suited for variable block size motion communication. In addition, we propose a fast mode decision method to choose the best mode at early stage. Experimental results show the reduction of the number of SAT SATD calculations by a factor of 4.5 and 2.6 times respectively, when we compare the proposed fast motion estimation and the conventional MVFAS $T^{[8-10]}$. Besides, the number of RDcost computations is reduced by about 45%. Therefore, the proposed methods reduces significantly its computational complexity without noticeable coding loss.

Efficient Power Reduction Technique of LiDAR Sensor for Controlling Detection Accuracy Based on Vehicle Speed (차량 속도 기반 정확도 제어를 통한 차량용 LiDAR 센서의 효율적 전력 절감 기법)

  • Lee, Sanghoon;Lee, Dongkyu;Choi, Pyung;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.215-225
    • /
    • 2020
  • Light detection and ranging (LiDAR) sensors detect the distance of the surrounding environment and objects. Conventional LiDAR sensors require a certain amount of a power because they detect objects by transmitting lasers at a regular interval depending on a constant resolution. The constant power consumption from operating multiple LiDAR sensors is detrimental to autonomous and electric vehicles using battery power. In this paper, we propose two algorithms that improve the inefficient power consumption during the constant operation of LiDAR sensors. LiDAR sensors with algorithms efficiently reduce the power consumption in two ways: (a) controlling the resolution to vary the laser transmission period (TP) of a laser diode (LD) depending on the vehicle's speed and (b) reducing the static power consumption using a sleep mode depending on the surrounding environment. A proposed LiDAR sensor with a resolution control algorithm reduces the power consumption of the LD by 6.92% to 32.43% depending on the vehicle's speed, compared to the maximum number of laser transmissions (Nx·max). The sleep mode with a surrounding environment-sensing algorithm reduces the power consumption by 61.09%. The proposed LiDAR sensor has a risk factor for 4-cycles that does not detect objects in the sleep mode, but we consider it to be negligible because it immediately switches to an active mode when a change in surrounding conditions occurs. The proposed LiDAR sensor was tested on a commercial processor chip with the algorithm controlling the resolution according to the vehicle's speed and the surrounding environment.

Development of an Environmental Friendly Hybrid Power System and its Application to Agricultural Machines (친환경 하이브리드 동력 시스템 개발 및 농기계 응용)

  • Kim, Sangcheol;Hong, Youngki;Kim, Gookhwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.447-452
    • /
    • 2015
  • A hybrid power system was developed for agricultural machines with a 20kW output capacity, and it was attached to a multi-purpose cultivator to improve the performance of the cultivator. The hybrid system combined heterogeneous sources: an internal-combustion engine and an electric power motor. In addition, a power splitter was developed to simplify the power transmission structure. The cultivator using a hybrid system was designed to have increased fuel efficiency and output power and reduced exhaust gas emissions, while maintaining the functions of existing cultivators. The fuel consumption for driving the cultivator in the hybrid engine vehicle (HEV) mode was 341g/kWh, which was 36% less than the consumption in the engine (ENG) mode for the same load. The maximum power take off output of the hybrid power system was 12.7kW, which was 38% more than the output of the internal-combustion engine. In the HEV mode, harmful exhaust gas emissions were reduced; i.e., CO emissions were reduced by 36~41% and NOx emissions were reduced by 27~51% compared to the corresponding emissions in the ENG mode. The hybrid power system improved the fuel efficiency and reduced exhaust gas emissions in agricultural machinery. The hybrid system's lower exhaust gas emissions have considerable advantages in closed work environments such as crop production facilities. Therefore, agricultural machinery with less exhaust gas emissions should be commercialized.

A Study on the Strength Evaluation of Unidirectional Carbon Fiber Reinforced Plastics by Nondestructive Method (일방성(一方性) 복함재료(複合材料)의 파괴거동(破壞擧動) 및 강도평가(强度評價)에 관(關)한 연구(硏究))

  • Chang, H.K.;Lee, J.S.;Cho, K.S.;Lee, S.H.;Park, E.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.2
    • /
    • pp.42-47
    • /
    • 1988
  • The off-axis tensile strength of the unidirectional carbon fiber reinforced plastic and the residual strength of impact damaged CFRP were measured and compared with the stress wave factor (SWF) of the specimens. The SWF values were measured to be decreased with the strength reduction in both cases and found to be useful for the nondestructive strength evaluation of unidirectional CFRP. The failure behaviour of the unidirectional CFRP during off-axis tensile testing was also monitored by acoustic emission(AE) method. The AE energy release showed the characteristic feature depending on the off-axis angle and this result was analyzed to be caused by the difference of the expected failure mode depending on the off-axis angle. The failure mode of CFRP was found to be analyzed by investigation of the peak amplitude distribution of AE.

  • PDF

Fast Inter/Intra Mode Decision Algorithm in H.264/AVC Considering Coding Efficiency (부호화 효율을 고려한 고속 인터/인트라 모드 결정 알고리즘)

  • Kim, Ji-Woong;Kim, Yong-Kwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.720-728
    • /
    • 2007
  • For the improvement of coding efficiency, the H.264/AVC video coding standard employs new coding tools compared with existing coding standards. However, due to these new coding tools, the complexity of H.2641AVC encoder is greatly increased. Specially, Inter/Intra mode decision method of H.264/AVC using RDO(rate-distortion optimization) technique is one of the most complex parts in H.264/AVC. In this paper, we focus on the complexity reduction in macroblock mode decision considering coding efficiency. From the simulation results, the proposed algorithm reduce the encoding time by maximum 80% of total, and reduce the bitrate of the overall sequences by $8{\sim}10%$ on the average compared with existing coding methods.

Vibration Mode and Durability Characteristics of Automotive IDS using Rotary Swaging Process for Incremental Forming (로터리 스웨이징 공정의 점진성형에 의한 중공 드라이브샤프트의 진동모드 및 내구특성)

  • Lim Seong-Joo;Lee Nak-Kyu;Lee Chi-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.127-133
    • /
    • 2005
  • Rotary swaging is one of the incremental forming process which is a chipless process using the reduction of cross-sections of bars, tubes and wires. The TDS(Tube Drive Shaft) of monobloc used in automotive has been developed by the rotary swaging process. The mechanical characteristics of swaged parts such as the hardness, thickness and roughness are also estimated to conduct experimental analyses of rotary swaging process with the materials of 34Mn5 Furthermore the change in the vibration mode of TDS due to design parameters, which are the tube length, diameter and thickness, has been investigated and analysed. The weight of the TDS product is smaller by about $12.8\%$ than that of SDS with the same performance. It could be evidently found that the TDS is designed to be much lighter than SDS (Solid Drive Shaft). This advantage might give some possibility to improve the NVH (Noise-Vibration-Harshness) characteristics. A maximum torque and a total number of torsional repetitions for the TDS is checked and measured to know the torsional intensity and fatigue strength through the static torsion test and torsional durability test, respectively. A total number of the torsional repetitions up to the fracture for the TDS is greater than 250,000 times.

An MPEG2-to-H.264 Transcoding Method (MPEG2에서 H.264로의 트랜스코딩 기법)

  • Kim, Dong-Hyung;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.706-715
    • /
    • 2005
  • In this paper, we present a transcoding algorithm for converting an MPEG-2 video bitstream to an H.264 bitstream. The proposed transcoder consists of two parts. One is MPEG2 decoding part and the other is H.264 encoding part Because our algorithm is for transcoding in the spatial domain, MPEG2 decoding part carries out full decoding of MPEG2 bitstream. While, because macroblock type and coded block pattern in MPEG2 are significantly related to macroblock mode in H.264, macroblock mode is selected adaptively according to macroblock type and coded block pattern in H.264 decoding part. Furthermore, motion vector is also used as side-information for 16$\ctimes$16 macroblock mode. Simulation results show that the proposed transcoder yields high reduction of total transcoding time at comparable PSNR.