• 제목/요약/키워드: Mode Interaction

검색결과 692건 처리시간 0.029초

미소 비대칭 링의 맥놀이 지도 (Beat Maps of a Slightly Asymmetric Ring)

  • 박석균;박기영;서백수;김석현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1169-1176
    • /
    • 2002
  • Analytical model of beat response is derived on a slightly asymmetric ring and is veryfied by experiment. The asymmetric ring is a simplified model used to explain the beat property of a Korean bell. The asymmetric ring has mode pair having slight frequency difference in each radial mode. Each mode pair produces beat phenomenon by the interaction of the two close frequency components. Based on the analytical model, beat maps are first proposed and characteristics of beat on the circumference are detaily explained.

  • PDF

비균질한 천해에서의 수중음파 전파 (Underwater Sound Propagation in a range-dependent Shallow water environment)

  • 나정열
    • 한국음향학회지
    • /
    • 제6권4호
    • /
    • pp.64-73
    • /
    • 1987
  • 비균질한 천해에서의 저주파 수중음파의 전파 특성을 수치모델을 이용 분석하였다. 특히 전파매질의 비균질성이 독특한 대한해협의 겨울철 해수특성을 고려하여 음속의 수평변화, 저질두께 및 감쇠계수의 변화, 수심의 변화등 천혜의 독특한 환경 변화요인을 거의 망라한 경우를 모델로 삼았다. 음원과 수신기의 수심을 수면가까이에 둔 경우소위Mode function의 수심에 따른 특성에 의한 손실이 일반적인 손실원인보다 크게 나타났으며 Adiabatic approximation을 이용한 Mode coupling효과는 High Mode의 감쇠특성에 의해 천해에서의 모델 적용 가능성을 보여주었다.

  • PDF

대화면 스마트폰의 한 손 조작 시 터치 사각영역 지원 인터랙션의 유용성 (Validating one-handed interaction modes for supporting touch dead-zone in large screen smartphones)

  • 박민지;김헌
    • 한국HCI학회논문지
    • /
    • 제12권1호
    • /
    • pp.25-32
    • /
    • 2017
  • 본 연구의 목적은 대화면 스마트폰을 한 손으로 조작 시 터치가 어려운 사각영역의 효율적인 터치를 지원하는 한 손 모드 인터랙션의 유용성을 평가하는 것이다. 이를 위해 아이폰과 안드로이드 스마트폰 내 두 종류의 기존 한손 모드들을 분석하였고, 보다 유용할 것으로 기대되는 두 개 유형의 한 손 모드들을 추가적으로 제안하고 구현하였다. 기존 및 제안한 한 손 모드들의 유용성을 검증하기 위해, 네 개의 한 손 모드들과 일반터치를 비교하는 실험을 수행하였다. 실험 결과, 일반터치에 비해 한 손 모드로 사각영역을 터치하는데 오히려 더 긴 시간이 걸렸다. 이는 한손 모드의 경우 모드진입 조작 및 모드전환 애니메이션 시간이 기본적으로 필요했기 때문이었다. 그러나 실험참여자들이 일반터치로 사각영역을 터치 시에는 엄지를 많이 뻗어서 터치해야 해서 손의 위치변화가 커지고 연속된 조작을 어려워하였다. 또한 한 손 모드로의 전환효과와 터치 조작반경의 축소로 인하여 주관적 만족도는 한 손 모드를 사용하는 것이 더 높았다. 한편, 한 손 모드들 중에서는 아이폰의 하단이동 한 손 모드가 가장 좋은 것으로 평가되었다.

지중매설관로의 거동특성 해석을 위한 관.지반 상호작용력의 산정 (Estimation of Pipeline.Soil Interaction Force for the Response Analysis of Buried Pipeline)

  • 김태욱;임윤묵;김문겸
    • 한국지진공학회논문집
    • /
    • 제7권3호
    • /
    • pp.57-67
    • /
    • 2003
  • Response analysis of buried pipeline subjected to permanent ground deformation(PGD) due to liquefaction is mainly executed by use of numerical analysis or semi-analytical relationship, When applying these methods, so called interfacial pipelineㆍsoil interaction force plays an dominant part. Currently used interaction force is mode up of indispensable mechanical and physical components for the response analysis of buried pipeline. However, it has somewhat limited applicability to the liquefied region since it is based on the experimental results for the non-liquefied region. Therefore, in this study, improved type of pipelineㆍsoil interaction force is proposed based on the existing interaction force and experimental research accomplishments. Above all, proposed interaction force includes various patterns of PGD or spatial distributions of interaction force caused by the decrease of soil stiffness. Through the comparison of numerical results using the proposed and the existing interaction force, relative influences of interaction force on the response of pipeline are evaluated and noticeable considerations in the application of semi-analytical relationship are discussed. Moreover, analyses due to the change of pipe thickness and burial depth are performed.

튜브형 수중교량의 교량-차량 동적상호작용 해석방법 (Dynamic interaction analysis of submerged floating tunnel and vehicle)

  • 김문영;곽종원;민동주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.83-88
    • /
    • 2013
  • The purpose of this study is to develop the algorithm for dynamic interaction analysis of submerged floating tunnel and vehicles. The dynamic behavior characteristic of submerged floating tunnel is certainly different with general structures, because the submerged floating tunnel is floating in the middle of water, and subjected to constant buoyance. Therefore the analyses in various aspects should be carried out to secure structural stability and practicality of structures. To conduct the dynamic interaction analysis, the structure is modeled by commercial FEM program ABAQUS to investigate modal characteristic. Also the added mass concept is applied to represent the inertial force by a fluid, and then dynamic interaction analyses are conducted with superposition method when the KTX is moving along the submerged floating tunnel. And the time histories are presented for vertical and lateral displacement at the center of the tunnel.

  • PDF

The Interaction of Mastoparan B from Venom of a Hornet Vespa Basalis with Phospholipid Matrices

  • 박남규;Yuhji Yamato;Sannamu Lee;Gohsuke Sugihara;박장수;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권3호
    • /
    • pp.239-244
    • /
    • 1996
  • Mastoparan B (MP-B) that is a novel MP isolated from the hornet Vespa basalis, was studied as compared with MP, in terms of interaction with phospholipid bilayer and antimicrobial activity. MP-B has more hydrophilic amino acid residues in hydrophilic face of amphiphilic α-helical structure than MP. The both peptides exhibited considerably different effect on interaction with lipid bilayers, e.g. their conformation in the presence of acidic and neutral liposomes, dye-release ability from encapsulated liposomes, but on the whole the interaction mode was similar. On antimicrobial activity, MP had a strong activity against Gram-positive bacteria but no against Gram negative ones. Contrary to this, MP-B had a strong activity against Gram-positive and potent against Gram-negative ones. Since both peptides have almost same residues on the hydrophobic side, such more hydrophilic surface on the molecule seems to lead to the subtle change in its interaction with membranes, resulting in the alternation in its biological activity.

등가 종 모델을 이용한 맥놀이 조절법 (Beat Control Using an Equivalent Ring Model)

  • 김석현;이중혁
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.516-519
    • /
    • 2012
  • This study proposes a method of an equivalent bell model in order to tune the beat period of a Korean bell. In a Korean bell having a slight asymmetry, each circumferential mode splits into a mode pair which has a slight difference in frequency, and the interaction of the mode pair makes a beat in vibration and sound. An equivalent bell model which consists of an axi-symmetric bell and an equivalent point mass, has the same mode property as in a real bell. The equivalent bell model is constructed by the finite element analysis based upon the theory of a revolutionary shell Using the equivalent bell model, the beat period is predicted when the bell thickness is locally decreased to improve the beat property. The predicted result is verified by experiment on a test bell. The proposed method is useful to save the time required for tuning the beat period of a large bell.

  • PDF

Constructing the mode shapes of a bridge from a passing vehicle: a theoretical study

  • Yang, Y.B.;Li, Y.C.;Chang, K.C.
    • Smart Structures and Systems
    • /
    • 제13권5호
    • /
    • pp.797-819
    • /
    • 2014
  • This paper presents a theoretical algorithm for constructing the mode shapes of a bridge from the dynamic responses of a test vehicle moving over the bridge. In comparison with those approaches that utilize a limited number of sensors deployed on the bridge, the present approach can offer much more spatial information, as well as higher resolution in mode shapes, since the test vehicle can receive the vibration characteristics of each point during its passage on the bridge. Basically only one or few sensors are required to be installed on the test vehicle. Factors that affect the accuracy of the present approach for constructing the bridge mode shapes are studied, including the vehicle speed, random traffic, and road surface roughness. Through numerical simulations, the present approach is verified to be feasible under the condition of constant and low vehicle speeds.

Estimation of a mixed-mode cohesive law for an interface crack between dissimilar materials

  • Song, Sung-Il;Kim, Kwang-Soo;Kim, Hyun-Gyu
    • Multiscale and Multiphysics Mechanics
    • /
    • 제1권1호
    • /
    • pp.35-51
    • /
    • 2016
  • In this paper, a mixed-mode cohesive law for an interface crack between epoxy and TR (transparent thermoplastic) resin is inversely estimated by the field projection method using numerical solutions and experimentally measured displacements. Displacements in a region far away from the crack tip are measured by digital image correlation technique. An inverse analysis, the field projection method formulated from the interaction J- and M-integrals with numerical auxiliary fields, is carried out to estimate a mixed-mode cohesive law for an interface crack between dissimilar materials. In the present approach, nonlinear deformations and damage near the crack tip are converted into the relationships of tractions and separations on crack surfaces behind the crack tip. The phase angle of mixed-mode singularities of the interface crack is also obtained from measured displacements in this study.

SSCI Mitigation of Series-compensated DFIG Wind Power Plants with Robust Sliding Mode Controller using Feedback Linearization

  • Li, Penghan;Xiong, Linyun;Wang, Jie;Ma, Meiling;Khan, Muhammad Waseem
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.569-579
    • /
    • 2019
  • A robust controller is designed based on feedback linearization and sliding mode control to damp sub-synchronous control interaction (SSCI) in doubly fed induction generator (DFIG) wind power plants (WPPs) interfaced with the grid. A feedback-linearized sliding mode controller (FLSMC) is developed for the rotor-side converter (RSC) through feedback linearization, design of the sliding mode controller, and parameter tuning with the use of particle swarm optimization. A series-compensated 100-MW DFIG WPP is adopted in simulation to evaluate the effectiveness of the designed FLSMC at different compensation degrees and wind speeds. The performance of the designed controller in damping SSCI is compared with proportional-integral controller and conventional sub-synchronous resonance damping controller. Besides the better damping capability, the proposed FLSMC enhances robustness of the system under parameter variations.