• Title/Summary/Keyword: Mode I Loading

Search Result 212, Processing Time 0.021 seconds

The Mixed Mode Fracture Using Concrete Disk (콘크리트 디스크를 이용한 혼합모드 파괴)

  • 진치섭;김희성;정진호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.63-69
    • /
    • 2000
  • This study investigates a new method of using a concrete disk to calculate stress intensity factor (SIF) for mixed mode cases. The results indicate that the disk method is more accurate than three point bending test (TPB) in obtaining correct SIF values for mixed mode fracture propagation. Stress intensity factors $K_{I}$ and $K_{II}$ are calculated using a center notched disk subjected to splitting load. The notch angle is calculated by finite element (FEM). Fracture toughness $K_\textsc{k}$ of the concrete is obtained from the load intensities at the initiation of crack propagation. According to the finite element analysis(FEA) and disk test, the results show that mode I and mixed mode cracks propagate toward the directions of crack face and loading point, respectively. The results from FEA with maximum stress theory compare well with the experimental date. Unlike TPB method where an accurate fracture toughness value is difficult to obtain due to the irregular shape of load deflection curve and delayed final crack propagation (following slow stable cracking). fracture toughness value is easily measured in the disk test from the crack initial load. Therefore, it is safe to conclude that disk method is more advantageous than TPB method in analyzing combined mode fracture problems.

A study of mixed-mode interlaminar fracture toughness of graphite/epoxy composite (炭素纖維强化 複合材料의 혼합모우드 層間破壞靭性値에 대한 硏究)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.198-207
    • /
    • 1986
  • This study investigates interlaminar fracture characteristics of Graphite/Epoxy composite (HFG Graphite/Epoxy) under mode I (opening mode), mode II (sliding mode) and mixed mode loading conditions. The effects on interlaminar fracture toughness due to different fiber orientations on the crack surface are also investigated. The antisymmetric test fixture proposed by M. Arcan is used for this test. Both critical stress intensity foctors and critical energy release rates were determined and several mixed mode fracture criteria were compared to the experimental data. Also fracture surfaces were investigaed to obtain informations on the fracture behaviors of Graphite/Epoxy composite by means of a scanning electron microscope(SEM).

Analysis of Propagating Crack In Isotropic Material under Dynamic Mode I Constant Displacement (동적모드 I 등변위상태하에서 전파하는 등방성체의 균열해석)

  • Lee, Gwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2007-2014
    • /
    • 2000
  • It has been reported that the dynamic stress intensity factor for a propagating crack is increasing or decreasing according to the increasement of the crack propagating velocity. It is confirmed in this study that the increasement or decreasement of stress intensity factor with crack growing velocity is accused by loading condition. When the crack propagates under a constant displacement along upper and lower boundary in finite plate, the dynamic stress intensity factor decreases according to the increasement of the propagating crack velocity. When the crack propagates under a constant stress along upper and lower boundary in finite plate, the dynamic stress intensity factor increases according to the increasement of the propagating crack velocity. The increasement or decreasement of stress intensity factor with crack growing velocity is greater in a fast crack propagation velocity than in a slow one.

Failure Paths of Polymer/Roughened Metal Interfaces under Mixed-Mode Loading (혼합 하중하에서의 고분자/거친금속 계면의 파손경로)

  • Lee Ho-Young;Kim Sung-Ryong
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.322-327
    • /
    • 2004
  • Copper-based leadframe sheets were oxidized in two kinds of hot alkaline solutions to form brown-oxide or black-oxide layer on the surface. The oxide coated leadframe sheets were molded with epoxy molding compound (EMC). After post mold curing, the oxide-coated EMC-leadframe joints were machined to form sandwiched Brazil-nut (SBN) specimens. The SBN specimens were used to measure the fracture toughness of the EMC/leadframe interfaces under mixed-mode (mode I + mode II) loading conditions. Fracture surfaces were analyzed by various equipment to investigate failure path. The results revealed that the failure paths were strongly dependent on the oxide type. In case of brown oxide, hackle-type failure was observed and failure path lay near the EMC/CuO interface with a little inclining to CuO at all case. On the other hand, in case of black oxide, quite different failure path was observed with respect to the distance from the tip of pre-crack and phase angle. Different failures occurred with oxide type is presumed to be due to the difference in microstructure of the oxides.

Evaluation of Adhesive Properties Using Cohesive Zone Model : Mode I (Cohesive Zone Model을 이용한 접착제 물성평가 : 모드 I)

  • Lee, Chan-Joo;Lee, Sang-Kon;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.474-481
    • /
    • 2009
  • Fracture models and criteria of adhesive with two parameters, namely $G_C$ and ${\sigma}_{max}$, have been developed to describe the fracture process of adhesive joints. Cohesive zone model(CZM) is a representative two parameter failure criteria approach. In CZM, ${\sigma}_{max}$ is a critical, limiting maximum value of the stress in the damage zone ahead of the crack and is assumed to have some physical significance in adhesive failure. Based on CZM and finite element analysis method, the relationship between fracture load and adhesive properties, as $G_{IC)$ and $({\sigma}_{max})_I$, was investigated in adhesively bonded joint tensile test and T-peel test. The two parameters in tensile mode loading were evaluated by using the relationship. The value of $G_{\IC}$ evaluated by proposed method showed close agreement with analytical solution for tapered double cantilever beam(TDCB) test which proposed in an ASTM standard.

Experimental Investigations of Mode I Fracture Toughness of a Hybrid Twill Woven Carbon and Aramid Fabric Composite (하이브리드 능직 탄소-아라미드 섬유 복합재의 모드 I 파괴인성에 대한 실험적 연구)

  • Kwon, Woo Deok;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.1-6
    • /
    • 2019
  • Carbon fiber has excellent specific strength, corrosion resistance and heat resistance. And p-Aramid fiber has high toughness and heat resistance and high elasticity, and is used in various fields such as industrial protective materials, bulletproof helmets and vests, as well as industrial fields. However, carbon fiber is relatively expensive, and is susceptible to brittle fracture behavior due to its low fracture strain. On the other hand, the aramid fiber tends to decrease in elastic modulus and strength when applied to the epoxy matrix, but it is inexpensive and has higher elongation and fracture toughness than carbon fiber. Thus the twill hybrid carbonaramid fiber reinforced composite laminate composite was investigated for a delamination fracture toughness under Mode I loading by 2 kinds of MBT and MCC deduction. The specimen was fabricated with 20 hybrid fabric plies. The initial crack was made by inserting the teflon tape in the center plane with a0/W=0.5 length. The results show that SERR(Strain Energy Release Rate) as the critical and stable delamination fracture toughness were 0.09 kJ/㎡, 0.386 kJ/㎡ by MBT deduction, and 0.192 kJ/㎡, 0.67 kJ/㎡ by MCC deduction, respectively.

Determination of Mode I Fracture Toughness of Rocks Using Wedge Splitting Test (쐐기 분열 시험을 이용한 암석의 모드 I 파괴인성 측정)

  • Ko, Tae Young;Kim, Taek Kon;Lee, Dae Hyuk
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.523-531
    • /
    • 2019
  • In the applications of rock mechanics or rock engineering including drill and blast, drilling and mechanical excavation, the fracture toughness is an important factor. Several methods have been proposed to measure the fracture toughness of rocks. In this study, wedge splitting test specimen which is prepared with ease and tested under compression loading was used to obtain mode I fracture toughness of rocks. The equation of stress intensity factor through numerical analysis is proposed from the stress state of crack tip considering both vertical and horizontal loads due to the vertical load acting on the wedge. The validity of the wedge splitting test method was confirmed by comparing the mode I fracture toughness values obtained by the GD and SENB test specimens.

Analysis of Shear Characteristics of Angle-Ply Laminates with Non-woven Tissue by FEM (FEM에 의한 부직포 삽입 예각 적층판의 전단특성 해석)

  • 이승환;정성균
    • Korean Journal of Crystallography
    • /
    • v.13 no.2
    • /
    • pp.69-72
    • /
    • 2002
  • The interlaminar problems near the free edge of composite laminates are analyzed in this paper. CFRP specimen ([+40/-40]s) and interleaved specimen ([+40//-40]s) with non-woven carbon tissue (NWCT) are discussed under tensile loading condition. The symbol “//”means that the NWCT is located between the CFRP interfaces. The NWCT has carbon short fibers which are discretely distributed with the in-plane random orientation. It was reported/sup 3)/ that the Mode Ⅱ interlaminar fracture toughness of CFRP laminates with NWCT is increased largely and the Mode I interlaminar fracture toughness is not changed significantly. Mode Ⅲ interlaminar fracture toughness is also an important factor in composite structures. But it is not easy to experimentally investigate the Mode Ⅲ interlaminar fracture toughness. The objective of this work is to study the effect of the NWCT and to fundamentally understand the Mode Ⅲ interlaminar shear characteristics of laminated composites with NWCT in the vicinity of a free edge by using finite element method analysis.

Analysis of the Propagation Characteristics of Ultrasonic Guided Waves Excited by Single Frequency and Broadband Sources

  • Kang, To;Song, Sung-Jin;Kim, Hak-Joon;Cho, Young-Do;Lee, Dong-Hoon;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.570-578
    • /
    • 2009
  • Excitation and propagation of guided waves are very complex problems in pipes due to their dispersive nature. Pipes are commonly used in the oil, chemical or nuclear industry and hence must be inspected regularly to ensure continued safe operation. The normal mode expansion(NME) method is given for the amplitude with which any propagating waveguide mode is generated in the pipes by applied surface tractions. Numerical results are calculated based on the NME method using different sources, i.e., non-axisymmetric partial loading and quasi-axisymmetric loading sources. The sum of amplitude coefficients for 0~nineth order of the harmonic modes are calculated based on the NME method and the dispersion curves in pipes. The superimposed total field which is namely the angular profile, varies with propagating distance and circumferential angle. This angular profile of guided waves provides information for setting the transducer position to find defects in pipes.

Effect of crack location on buckling analysis and SIF of cracked plates under tension

  • Memarzadeh, Parham;Mousavian, Sayedmohammad;Ghehi, Mohammad Hosseini;Zirakian, Tadeh
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.215-235
    • /
    • 2020
  • Cracks and defects may occur anywhere in a plate under tension. Cracks can affect the buckling stability performance and even the failure mode of the plate. A search of the literature reveals that the reported research has mostly focused on the study of plates with central and small cracks. Considering the effectiveness of cracks on the buckling behavior of plates, this study intends to investigate the effects of some key parameters, i.e., crack size and location as well as the plate aspect ratio and support conditions, on the buckling behavior, stress intensity factor (SIF), and the failure mode (buckling or fracture) in cracked plates under tension. To this end, a sophisticated mathematical code was developed using MATLAB in the frame-work of extended finite element method (XFEM) in order to analyze the buckling stability and collapse of numerous plate models. The results and findings of this research endeavor show that, in addition to the plate aspect ratio and support conditions, careful consideration of the crack location and size can be quite effective in buckling behavior assessment and failure mode prediction as well as SIF evaluation of the cracked plates subjected to tensile loading.