• 제목/요약/키워드: Mode Decouple Ratio

검색결과 2건 처리시간 0.019초

철도 가선시스템의 감쇄 특성 파악에 관한 연구 (A study on identification of the damping ratio in a railway catenary system)

  • 박성용;전병욱;이응신;조용현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.529-533
    • /
    • 2005
  • A railway catenary system which supplies a train with electric power is an important system in determining the maximum speed of an electric train. However, a pantograph could be separated from a contact wire because of reciprocal action between a pantograph with constant upward force and a catenary system. The contact loss of a pantograph-catenary system is mainly affected by the dynamic characteristics of damping and wave propagation velocity of contact wire. For increasing speed of an electrical train, it is necessary to establish the techniques to identify the modal parameter of a catenary system through experiment. However, it is difficult to decouple each mode and to extract respect ive damping rat io since a catenary system has an extremely high modal density. For this reason, mode decoupling process to identify modal parameters is a principal technique in analyzing a catenary system. In this paper, the damping extract ion method for a catenary system using the continuous wavelet transform is discussed.

  • PDF

자동차용 파워트레인 마운팅 시스템의 최적설계 (Optimum Design of Vehicle Powertrain Mounting System)

  • 김진훈;이수종;이우현;김정렬
    • 동력기계공학회지
    • /
    • 제14권3호
    • /
    • pp.33-38
    • /
    • 2010
  • Technology of vehicle industry has been developing and it is required a better vehicle performance than before. Therefore, the consumers are asking not only an economic efficiency, functionality, polished design, ride comfort and silence but also a driving stability. The ride comfort, silence and driving stability are influenced by the size of vehicle and various facilities. But the principal factor is a room noise and vibration sensed by a driver and passenger. Thus, the NVH of vehicle has been raised and used as a principal factor for evaluation of vehicle performance. The primary objective of this study is an optimized design of powertrain mounting system. To optimized design was applied MSC.Nastran optimization modules. Results of dynamic analysis for powertrain mounting system was investigated. By theses results, design variables was applied 12 dynamic spring constant. And the weighting factor according to translational displacement and rotational displacement applied 3 cases. The objective function was applied to minimize displacement of powertrain. And the design variable constraint was imposed dynamic spring constant ratio. The constraint of design variable for objective function was imposed bounce displacement for powertrain.