• Title/Summary/Keyword: Mode Complexity

Search Result 404, Processing Time 0.03 seconds

Peirce and the Problem of Symbols (퍼스와 상징의 문제)

  • Noh, Yang-jin
    • Journal of Korean Philosophical Society
    • /
    • v.152
    • /
    • pp.59-79
    • /
    • 2019
  • The main purpose of this paper is to critically examine the intractable problems of Peirce's notion of 'symbol' as a higher and perfect mode of sign, and present a more appropriate account of the higher status of symbol from an experientialist perspective. Peirce distinguished between icon, index, and symbol, and suggested symbol to be a higher mode of sign, in that it additionally requires "interpretation." Within Peirce's picture, the matter of interpretation is to be explained in terms of "interpretant," while icon or index are not. However, Peirce's conception of "interpretant" itself remains fraught with intractable opacities, thereby leaving the nature of symbol in a misty conundrum. Drawing largely on the experientialist account of the nature and structure of symbolic experience, I try to explicate the complexity of symbol in terms of "the symbolic mapping." According to experientialism, our experience consists of two levels, i.e., physical and symbolic. Physical experience can be extended to symbolic level largely by means of "symbolic mapping," and yet is strongly constrained by physical experience. Symbolic mapping is the way in which we map part of certain physical experience onto some other area, thereby understanding the other area in terms of the mapped part of the physical experience. According to this account, all the signs, icon, index, and symbol a la Peirce, are constructed by way of symbolic mapping. While icon and index are constructed by mapping physical level experience onto some signifier(i.e. Peirce's "representamen"), symbol is constructed by mapping abstract level experience onto some signifier. Considering the experientialist account that abstract level of experience is constructed by way of symbolic mapping of physical level of experience, the symbolic mapping of abstract level of experience onto some other area is a secondary one. Thus, symbol, being constructed by way of secondary or more times mapping, becomes a higher level sign. This analysis is based on the idea that explaining the nature of sign is a matter of explaining that symbolic experience, leaving behind Peirce's realist conception of sign as a matter of an event or state of affairs out there. In conclusion, I suggest that this analysis will open up new possibilities for a more appropriate account of the nature of signs, beyond Peirce's complicated riddles.

Roles of the Insulin-like Growth Factor System in the Reproductive Function;Uterine Connection (Insulin-like Growth Factor Systems의 생식기능에서의 역할;자궁편)

  • Lee, Chul-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.247-268
    • /
    • 1996
  • It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.

  • PDF

Improving Bidirectional LSTM-CRF model Of Sequence Tagging by using Ontology knowledge based feature (온톨로지 지식 기반 특성치를 활용한 Bidirectional LSTM-CRF 모델의 시퀀스 태깅 성능 향상에 관한 연구)

  • Jin, Seunghee;Jang, Heewon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.253-266
    • /
    • 2018
  • This paper proposes a methodology applying sequence tagging methodology to improve the performance of NER(Named Entity Recognition) used in QA system. In order to retrieve the correct answers stored in the database, it is necessary to switch the user's query into a language of the database such as SQL(Structured Query Language). Then, the computer can recognize the language of the user. This is the process of identifying the class or data name contained in the database. The method of retrieving the words contained in the query in the existing database and recognizing the object does not identify the homophone and the word phrases because it does not consider the context of the user's query. If there are multiple search results, all of them are returned as a result, so there can be many interpretations on the query and the time complexity for the calculation becomes large. To overcome these, this study aims to solve this problem by reflecting the contextual meaning of the query using Bidirectional LSTM-CRF. Also we tried to solve the disadvantages of the neural network model which can't identify the untrained words by using ontology knowledge based feature. Experiments were conducted on the ontology knowledge base of music domain and the performance was evaluated. In order to accurately evaluate the performance of the L-Bidirectional LSTM-CRF proposed in this study, we experimented with converting the words included in the learned query into untrained words in order to test whether the words were included in the database but correctly identified the untrained words. As a result, it was possible to recognize objects considering the context and can recognize the untrained words without re-training the L-Bidirectional LSTM-CRF mode, and it is confirmed that the performance of the object recognition as a whole is improved.

The effect of labial inclination on intrusion of the upper and lower incisors by three-dimensional finite element analysis (분절호선법으로 상하악 절치부 압하 시 순측경사도가 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Kim, Dong Woo;Yang, Hoon Chul;Kim, Gi Tae;Kim, Sung Sik;Son, Woo Sung
    • The korean journal of orthodontics
    • /
    • v.33 no.4 s.99
    • /
    • pp.259-277
    • /
    • 2003
  • This study was designed to investigate the position of anteroposterior center of resistance for genuine intrusion and the mode of change of the minimum distal force for simultanous intrusion and retraction of the upper and lower incisors according to the increase of labial inclination. For this purpose, we used the three-piece intrusion arch appliance and three-dimensional finite element models of upper and lower incisors. 1. Positions of the center of resistance in upper incisors according to the increase of the labial inclination were as follows; 1) In normal inclination situation, the center of resistance was located in 6m behind the distal surface of the lateral incisor bracket. 2) In $10^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 9mm behind the distal surface of the lateral incisor bracket. 3) In $20^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 12m behind the distal surface of the lateral incisor bracket. 4) In $30^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 16m behind the distal surface of the lateral incisor bracket. 2. Positions of the center of resistance in lower incisors according to the increase of the labial inclination were as follows; 1) In normal inclination situation, the center of resistance was located in 10mm behind the distal surface of the lateral incisor bracket. 2) In $10^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 13m behind the distal surface of the lateral incisor bracket. 3) In $20^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 15m behind the distal surface of the lateral incisor bracket. 4) In $30^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 18m behind the distal surface of the lateral incisor bracket. 3. The patterns of stress distribution were as follows; 1) There were even compressive stresses In and periodontal ligament when intrusion force was applied through determined center of resistance. 2) There were gradual increase of complexity in compressive stress distribution pattern with Increase of the labial inclination when intrusion and retraction force were applied simultaneously. 4. With increase of the labial inclination of the upper and lower incisors, the position of the center of resistance moved posteriorly. And the distal force for pure intrusion was increased until $20^{\circ}$increase of the labial inclination.