KSII Transactions on Internet and Information Systems (TIIS)
/
제10권7호
/
pp.3286-3300
/
2016
High Efficiency Video Coding (HEVC) Standard, as the latest coding standard, introduces satisfying compression structures with respect to its predecessor Advanced Video Coding (H.264/AVC). The new coding standard can offer improved encoding performance compared with H.264/AVC. However, it also leads to enormous computational complexity that makes it considerably difficult to be implemented in real time application. In this paper, based on machine learning, a fast partitioning method is proposed, which can search for the best splitting structures for Intra-Prediction. In view of the video texture characteristics, we choose the entropy of Gray-Scale Difference Statistics (GDS) and the minimum of Sum of Absolute Transformed Difference (SATD) as two important features, which can make a balance between the computation complexity and classification performance. According to the selected features, adaptive decision trees can be built for the Coding Units (CU) with different size by offline training. Furthermore, by this way, the partition of CUs can be resolved as a binary classification problem. Experimental results have shown that the proposed algorithm can save over 34% encoding time on average, with a negligible Bjontegaard Delta (BD)-rate increase.
In this paper, we propose a fast ME (motion estimation) algorithm for MPEG-4 to H.264 Transcoder. Whereas 2 modes ($8{\times}8$, $16{\times}16$) are used for ME in MPEG-4 simple profile, ME using 7 modes is supported for further enhanced coding efficiency in H.264. The transcoding speed is affected dominantly by the computational complexity of encoder part in transcoder, where ME module of H.264 encoder has high complexity due to using 7 modes. In order to increase the speed of transcoding between MPEG-4 and H.264, we use 3 PMVs (predicted motion vectors) and the mode information of MBs (macroblocks) provided from the decoder part of transcoder. Since the proposed 3 PMVs are very close to an optimal motion vector, and we consider only some restricted modes according to the MB information transferred from decoder part, the proposed scheme can speed up the transcoding procedure without loss of image quality. We show experimental results which demonstrate the effectiveness of the proposed algorithm, where performance of our scheme is compared with that of the conventional fast algorithm for H.264.
H.264/AVC는 ITU-T와 ISO/IEC 표준화 단체에서 개발한 차세대 국제 영상압축 표준규격으로 이는 H.261, H.263, MPEG-4 등에 비해 더 좋은 압축 효율을 제공한다. 그러나 전체 인트라 모드에 대해 검색이 수행되므로 연산복잡성이 더욱 증가하는 문제와 하드웨어 자원의 낭비가 발생한다. 따라서 본 논문은 두 개의 프로세서 유닛 기반의 병렬 파이프라인 구조로 표준 모델에 비해 연산 복잡 도를 67% 감소시켰고, 부호화 순서를 병렬 파이프라인 구조에 적합하도록 변화시켜 기존 병렬구조에 비해 하드웨어 자원 낭비를 3% 감소시켰다.
High Efficiency Video Coding (HEVC) is the most recent video codec standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goal of this newly introduced standard is for catering to high-resolution video in low bandwidth environments with a higher compression ratio. This paper provides a performance comparison between HEVC and H.264/AVC video compression standards in terms of objective quality, delay, and complexity in the broadcasting environment. The experimental investigation was carried out using six test sequences in the random access configuration of the HEVC test model (HM), the HEVC reference software. This was also carried out in similar configuration settings of the Joint Scalable Video Module (JSVM), the official scalable H.264/AVC reference implementation, running on a single layer mode. According to the results obtained, the HM achieves more than double the compression ratio compared to that of JSVM and delivers the same video quality at half the bitrate. Yet, the HM encodes two times slower (at most) than JSVM. Hence, it can be concluded that the application scenarios of HM and JSVM should be judiciously selected considering the availability of system resources. For instance, HM is not suitable for low delay applications, but it can be used effectively in low bandwidth environments.
분산 압축 비디오 센싱 (DCVS) 기술은 압축센싱 및 분산 비디오 부호화 기술의 결합을 통해 저 비용의 샘플링을 실현하는 새로운 패러다임이다. 본 논문에서는 프레임 간 높은 시간 상관성을 활용한 DCVS에서의 스킵모드 부호화 방법을 제안한다. 제안하는 방법은 일정조건을 만족하는 비 키-프레임에 대한 측정값을 복호화기에 전송하지 않아도 시간적 보간법을 통해 해당 비 키-프레임의 복원이 가능하도록 하여 율-왜곡 측면에서 좋은 압축 성능을 보장한다. 이와 더불어, 더 나은 시간적 보간을 위하여 계층적 구조를 사용하는 방법을 제안한다. 실험 결과, 제안하는 스킵모드 부호화 방법은 약간의 PSNR 감소에 비해 매우 높은 측정율 절약이 되는 것을 확인하였다. 또한, 제안하는 방법을 높은 시간 연관성을 갖는 비디오 영상에 적용할 경우, 복호화기의 연산 복잡도가 평균 43.75% 감소하는 것을 확인하였다.
최신 비디오 부호화 표준인 H.264에서는 화면내 예측으로 화소블록의 신호값을 예측하기 위하여 9개의 모드를 사용한다. 이러한 과정을 거쳐 화면내 부호화신호에서 우수한 압축율을 가져을 수 있으나 9가지 예측 모드 전체 사용은 인접화소 비교로 인해 발생되는 연산량 또는 탐색건수로 복잡도가 증가되는 비효율성을 내재하고 있다. 본 논문에서는 주관적 관심영역을 고려한 화면내 예측모드의 간소화 방법을 제안한다. 비디오 신호의 각 화면에는 관심이 주어지는 특정영역이 존재한다. 이러한 영역은 다른 영역에 비하여 더 좋은 주관적화질 제공이 필요하다. 제안된 방법은 주관적 관심이 높은 영역에 비하여 주관적 관심이 낮은 영역에는 9개의 모드중에 필수모드만을 제공하여 예측모드 간소화를 높여준다. 예측특성만을 고려하여 화면 전체에 간소화를 주는 기존 방법에 비하여 제안된 방법은 추가적으로 11%$\sim$15%의 예측모드 간소화가 가능하다.
뉴럴 네트워크는 동작 모드를 학습과 인지 과정으로 구분할 수 있다. 학습은 다양한 입력 패턴에 대하여 학습자가 원하는 결과값을 얻을 때까지 결합계수를 업데이트하는 과정이고, 인지는 학습을 통해 결정된 결합계수와 입력 패턴과의 연산을 수행하는 과정이다. 기존의 내적연산 프로세서는 처리 속도를 개선하고 하드웨어 복잡도를 줄이는 다양한 구조가 연구되었지만 뉴럴 네트워크의 학습과 인지모드에 대한 차별화된 구조는 없었다. 이를 위해, 본 논문에서는 재구성 가능한 뉴럴 네트워크 구현을 위한 새로운 저전력 내적연산 프로세서 구조를 제안한다. 제안한 구조는 학습모드에서 기존의 비트-시리얼 내적연산 프로세서와 같이 동작을 하여, 비트-레벨의 타른 처리 및 하드웨어 구현에 적합하고 높은 수준의 파이프라인 적용이 가능하다는 장점을 가진다. 또한, 인지모드에서는 고정된 결합계수에 따라 연산을 수행할 활성화 유닛을 최소화시킴으로서 전력 소비를 줄일 수 있다. 시뮬레이션 결과 활성화 유닛은 결합계수에 의존적이기는 하지만 50% 내외까지 줄일 수 있음을 확인하였다.
본 논문에서는 기존 OFDM(Orthogonal Frequency Division Multiplexing) 시스템보다 높은 성능과 스펙트럼 효율를 달성할 수 있는 OFDM-CDIM(Coded Direct Index Modulation) 시스템을 제안한다. 기존 OFDM-IM(Index Modulation) 및 DM(Dual Mode)-OFDM-IM 시스템은 높은 복잡도를 갖는 조합연산을 통해 각 부반송파의 인덱스에 추가적인 데이터를 할당하여 전송한다. 그러나 제안하는 시스템은 모드를 선택하는 정보를 각 부반송파에 추가 연산 없이 직접 할당하고, 선택된 모드 내에서 하나의 심볼을 선택하여 전송한다. 더욱이 부반송파의 인덱스에 할당되는 데이터에만 부호화를 수행하여 높은 부호율과 함께 우수한 성능 개선 효과를 얻는다. 시뮬레이션 결과를 통해 4개를 모드를 사용하는 4M(Four Modes)-OFDM-CDIM 시스템은 기존 4QAM(Quadrature Amplitude Modulation)을 사용하는 OFDM 시스템과 비교하여 AWGN(Additive White Gaussian Noise)과 Rayleigh 페이딩 환경에서 BER(Bit Error Rate) 성능과 전송 효율을 향상시킬 수 있음을 정량적으로 확인할 수 있다.
Purpose: In this study, a hybrid power system was developed for agricultural machines with a 20-KW output capacity, and it was attached to a multi-purpose cultivator to improve the performance of the cultivator, which was evaluated using output tests. Methods: The hybrid system combined heterogeneous sources: an internal-combustion engine and an electric power motor. In addition, a power splitter was developed to simplify the power transmission structure. The cultivator using the hybrid system was designed to have increased fuel efficiency and output power and reduced exhaust gas emissions, while maintaining the functions of existing cultivators. Results: The fuel consumption for driving the cultivator in the hybrid engine vehicle (HEV) mode was 341 g/KWh, which was 36% less than the consumption in the engine (ENG) mode for the same load. The maximum power take off output of the hybrid power system was 12.7 KW, which was 38% more than the output of the internal-combustion engine. In the HEV mode, harmful exhaust gas emissions were reduced; i.e., CO emissions were reduced by 36~41% and NOx emissions were reduced by 27~51% compared to the corresponding emissions in the ENG mode. Conclusions: The hybrid power system improved the fuel efficiency and reduced exhaust gas emissions in agricultural machinery. Lower exhaust gas emissions of the hybrid system have considerable advantages in closed work environments such as crop production facilities; therefore, agricultural machinery with less exhaust gas emissions should be commercialized. However, the high manufacturing cost and complexity of the proposed system are challenges which need to be solved in the future.
This paper investigates the usefulness of drones in an urban delivery system. We define the vehicle and drone routing problem with time window (VDRPTW) and present a model that can describe a dual mode delivery system consisting of drones and vehicles in the metropolitan area. Drones are relatively free from traffic congestion but have limited flight range and capacity. Vehicles are not free from traffic congestion, and the complexity of urban road network reduces the efficiency of vehicles. Using drones and vehicles together can reduce inefficiency of the urban delivery system because of their complementary cooperation. In this paper, we assume that drones operate in a point-to-point manner between the depot and customers, and that customers in the need of fast delivery are willing to pay additional charges. For the experiment datasets, we use instances of Solomon (1987), which are well known in the Vehicle Routing Problem society. Moreover, to mirror the urban logistics demand trend, customers who want fast delivery are added to the Solomon's instances. We propose a hybrid evolutionary algorithm for solving VDRPTW. The experiment results provide different useful insights according to the geographical distributions of customers. In the instances where customers are randomly located and in instances where some customers are randomly located while others form some clusters, the dual mode delivery system displays lower total cost and higher customer satisfaction. In instances with clustered customers, the dual mode delivery system exhibits narrow competition for the total cost with the delivery system that uses only vehicles. In this case, using drones and vehicles together can reduce the level of dissatisfaction of customers who take their cargo over the time-window. From the view point of strategic flexibility, the dual mode delivery system appears to be more interesting. In meeting the objective of maximizing customer satisfaction, the use of drones and vehicles incurs less cost and requires fewer resources.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.