• Title/Summary/Keyword: Mode Collapse

Search Result 194, Processing Time 0.027 seconds

A Study on Impact Collapse Modes of Composite Structural Members using Carbon Fiber Reinforced Plastics for Car Body Lightweight (차체 경량화를 위한 CFRP 복합구조부재의 충격압궤모드에 관한 연구)

  • Hwang, W.C.;Choi, Y.M.;Im, K.H.;Cha, C.S.;Yang, Y.J.;Yang, I.Y.
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.7-14
    • /
    • 2014
  • This study aimed to develop members with the optimum impact characteristics to ensure a protected space for passengers in the case of automobile collisions. Accordingly, these members were fabricated to provide sufficient rigidity and safety to the passenger room structure and to absorb large amounts of energy during collision. In particular, CFRP members were fabricated with different section shapes such as square and single- and double-hat shapes. Next, their impact collapse characteristics and collapse modes were quantitatively analyzed according to the changes in section shapes and stacking angles. This analysis was performed to obtain design data that can be applied in the development of optimum lightweight members for automobiles.

Energy Absorbing Control Characteristic of Al Thin-walled Tubes (AL 박육부재의 에너지 흡수 제어특성)

  • Yang, Yong-Jun;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.86-91
    • /
    • 2008
  • The structural members must be designed to control characteristics of energy absorption for protecting passengers in a car accident. Study on collapse characteristics of structural member is currently conducted in parallel with other studies on effective energy absorption capacity of structural members with diverse cross-sectional shapes and various materials. This study concerns the crashworthiness of the widely used vehicle structural members, square thin-walled tubes, which are excellent in the point of the energy absorption capacity. The absorbed energy, mean collapse load and deformation mode were analyzed for side member which absorbs most of the collision energy. To predict and control the energy absorption, controller is designed in consideration of its influence on height, thickness and width ration in this study. The absorbed energy and mean collapse load of square tubes were increased by $15{\sim}20%$ in using the controller, and energy absorbing capability of the specimen was slightly changed by change of the high controller's height.

A Study on the Axial Crushing Behavior of Aluminum Cm Circular Members for light-weight (경량화용 Al/CFRP원형 부재의 축 압궤거동에 관한 연구)

  • Lee, Kil-Sung;Cha, Cheon-Seok;Yang, In-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.50-56
    • /
    • 2005
  • Aluminum member absorbs energy by stable plastic deformation under axial loading. While CFRP(Carbon Fiber Reinforced Plastics) member absorbs energy by unstable brittle failure but its specific strength and stiffness is higher than those of aluminum member. In this study, for complement of detects and synergy effect by combination with the advantages of each member, the axial collapse tests were performed for aluminum CFRP members which are composed of aluminum members wrapped with CFRP outside aluminum circular members. Based on the respective collapse characteristics of aluminum and CFRP members, crushing behavior and energy absorption characteristics were analyzed for aluminum CRRP members which have different CFRP fiber orientation angle and thickness Test results showed that aluminum CFRP members supplemented the unstable brittle failure of CFRP members due to ductile nature of inner aluminum members. It turned out that the CFRP fiber orientation angle and thickness influence energy absorption capability together with the collapse mode of the members.

Probabilistic seismic performance evaluation of non-seismic RC frame buildings

  • Maniyar, M.M.;Khare, R.K.;Dhakal, R.P.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.725-745
    • /
    • 2009
  • In this paper, probabilistic seismic performance assessment of a typical non-seismic RC frame building representative of a large inventory of existing buildings in developing countries is conducted. Nonlinear time-history analyses of the sample building are performed with 20 large-magnitude medium distance ground motions scaled to different levels of intensity represented by peak ground acceleration and 5% damped elastic spectral acceleration at the first mode period of the building. The hysteretic model used in the analyses accommodates stiffness degradation, ductility-based strength decay, hysteretic energy-based strength decay and pinching due to gap opening and closing. The maximum inter story drift ratios obtained from the time-history analyses are plotted against the ground motion intensities. A method is defined for obtaining the yielding and collapse capacity of the analyzed structure using these curves. The fragility curves for yielding and collapse damage levels are developed by statistically interpreting the results of the time-history analyses. Hazard-survival curves are generated by changing the horizontal axis of the fragility curves from ground motion intensities to their annual probability of exceedance using the log-log linear ground motion hazard model. The results express at a glance the probabilities of yielding and collapse against various levels of ground motion intensities.

Proposal of Strength-Based Design Procedure for Improving the Seismic Performance of Steel Ordinary Moment Frames (철골 보통모멘트골조의 내진성능 향상을 위한 강도기반 설계 절차 제안)

  • Kim, Taeo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.11-20
    • /
    • 2024
  • The ductility of the system based on the capacity of each structural member constituting the seismic force-resisting system is a significant factor determining the structure's seismic performance. This study aims to provide a procedure to supplement the current seismic design criteria to secure the system's ductility and improve the seismic performance of the steel ordinary moment frames. For the study, a nonlinear analysis was performed on the 9- and 15-story model buildings, and the formation of collapse mechanisms and damage distribution for dynamic loads were analyzed. As a result of analyzing the nonlinear response and damage distribution of the steel ordinary moment frame, local collapse due to the concentration of structural damage was observed in the case where the influence of the higher mode was dominant. In this study, a procedure to improve the seismic performance and avoid inferior dynamic response was proposed by limiting the strength ratio of the column. The proposed procedure effectively improved the seismic performance of steel ordinary moment frames by reducing the probability of local collapse.

Average spectral acceleration: Ground motion duration evaluation

  • Osei, Jack Banahene;Adom-Asamoah, Mark
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.577-587
    • /
    • 2018
  • The quantitative assessment of the seismic collapse risk of a structure requires the usage of an optimal intensity measure (IM) which can adequately characterise the severity of the ground motion. Research suggests that the average spectral acceleration ($Sa_{avg}$) may be an efficient and sufficient alternate IM as compared to the more traditional first mode spectral acceleration, $Sa(T_1)$, particularly during seismic collapse risk estimation. This study primarily presents a comparative evaluation of the sufficiency of the average spectral acceleration with respect to ground motion duration, and secondarily assesses the impact of ground motion duration on collapse risk estimation. By assembling a suite of 100 historical ground motions, incremental dynamic analysis of 60 different inelastic single-degree-of-freedom (SDF) oscillators with varying periods and ductility capacities were analysed, and collapse risk estimates obtained. Linear regression models are used to comparatively quantify the sufficiency of $Sa_{avg}$ and $Sa(T_1)$ using four significant duration metrics. Results suggests that an improved sufficiency may exist for $Sa_{avg}$ when the period of the SDF system increases, particularly beyond 0.5, as compare to $Sa(T_1)$. In reference to the ground motion duration measures, results indicated that the sufficiency of $Sa_{avg}$ is more sensitive to significant duration definitions that consider almost the full wave train of an accelerogram ($SD_{a5-95}$ and $SD_{v5-95}$). In order to obtain a reduced variability of the collapse risk estimate, the 5-95% significant duration metric defined using the Arias integral ($SD_{a5-95}$) should be used for seismic collapse risk estimation in conjunction with $Sa_{avg}$.

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

A Simplified Approach to the Analysis of the Ultimate Compressive Strength of Welded Stiffened Plates (용접된 보강판의 압축 최종 강도의 간이 해석법)

  • C.D. Jang;Seung-Il Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.141-154
    • /
    • 1993
  • In this paper, a method to calculate the ultimate compressive strength of welded one-sided stiffened plates simply supported along all edges is proposed. At first initial imperfections such as distortions and residual stresses due to welding are predicted by using simplified methods. Then, the collapse modes of the stiffened plate are assumed and collapse loads for each mode are calculated. Among these loads, the lowest value is selected as the ultimate strength of the plate. Collapse modes are assumed as follows ; (1) Overall buckling of the stiffened plate$\rightarrow$Overall collapse due to stiffener bending (2) Local buckling of the plate part$\rightarrow$Local collapse of the plate part$\rightarrow$Overall collapse due to stiffener yielding (3) Local buckling of the plate part$\rightarrow$Overall collapse due to stiffener berthing (4) Local buckling of the plate part$\rightarrow$Local collapse of the plate part$\rightarrow$Overall collapse due to stiffener tripping. The elastic large deflection analysis based on the Rayleigh-Ritz method is carried out, and plastic analysis assuming hinge lines is also carried out. Collapse load is defined as the cross point of the two analysis curves. This method enables the utimate strength to be calculated with small computing time and a good accuracy. Using the present method, characteristics of the stiffener including torsional rigidity, bending and tripping can also be clarified.

  • PDF

New vibration control device and analytical method for slender structures

  • Takabatake, Hideo;Ikarashi, Fumiya
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.11-39
    • /
    • 2013
  • Since slender structures such as utility poles, radio masts, and chimneys, are essentially statically determinate structures, they often collapse during earthquakes. Although vibration control is the most logical method for improving the earthquake resistance of such structures, there are many practical problems with its implementation due to their very long natural vibration period. This paper proposes a new vibration control device to effectively prevent the collapse of slender structures subjected to strong earthquakes. The device consists of a pendulum, an elastic restraint and a lever, and is designed such that when it is attached to a slender structure, the second vibration mode of the structure corresponds to the first vibration mode of the same structure without the device attached. This is highly effective in causing the transverse motions of the device and the structure to oppose each other and so reduce the overall transverse vibration during an earthquake. In the present paper, the effectiveness of the vibration control device is first evaluated based on laboratory experiments and numerical studies. An example of applying the device to a tall chimney is then simulated. A new dynamic analytical method for slender structures with abrupt rigidity variations is then proposed.

Evaluation of Plastic Collapse Bending Load of Elbows with Thinning Area of Various Shapes (여러 형상의 감육부를 가진 엘보우의 소성붕괴 굽힘 하중의 평가)

  • Shin, Kyu-In;Lee, Sung-Ho;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • Elbows with various shapes of local wall thinning were numerically analyzed by finite element method to get load-displacement curves and the maximum loads. Results were compared with the experimental data obtained by another study. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending loads. Two types of bending loads were considered such as elbow opening mode and elbow closing mode. Also, two different wall thinning geometries were modeled. Wall thinning area located extrados or intrados of elbow inner surface was considered. Longitudinal and circumferential lengths of the thinning area and the thinned thickness were varied for analysis. The results showed that the maximum load of the wall-thinned elbow decreased with increasing of the circumferential thinning length and the thinned thickness in both of extrados and intrados thinning locations in both loading types. The maximum load obtained by the analysis were in good agreement with the experimentally measured maximum load with the same wall thinning type and dimensions. This supports accuracy of the analysis results obtained in this study.