• Title/Summary/Keyword: Mode Collapse

Search Result 194, Processing Time 0.028 seconds

Properties of Multiple Load Flow Solutions and Prevention of Voltage Collapse in System with Induction Motor Load (전압다적해의 특성 및 유도전동기부하를 갖는 계통에 있어서의 전압안정)

  • Park, Jong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.1
    • /
    • pp.19-28
    • /
    • 1985
  • As is well known, the power equations of the N-node system have 2N-1 voltage solutions at most. The vlotage solutions are characterized by the introduction of the mode concept in this paper. There are two mode voltages at one node. One is defined as the (+) mode voltage and the other is defined as the (-) mode one. In this paper, we show that the (-) mode voltage responds to the increase of the power condenser almost adversly to the response of the (+) one. We study how to prevent the voltage collapse in the system with the induction motor load. The critical values of the gain and the time constant in case of the continuous power condenser control, and of the unit power condenser and the closing time delay in case of the discontinuous control for the prevention of the voltage collapse, are calculated. The effect of the composition ratio of the impedance load to the induction moter load on the above critical values are also investigated.

  • PDF

Collapse Characteristics of CFRP hat Shaped Structural Member with Various Orientation Angle for a Use of Lightweight (경량화용 CFRP 모자형 구조부재의 적층각도 변화에 따른 압궤특성)

  • Hwang, Woochae;Yang, Yongjun;Yang, Inyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.865-870
    • /
    • 2012
  • CFRP of the advanced composite materials as structure materials for vehicles has a widely application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness compared with conventional materials. This study is to investigate the energy absorption characteristics and collapse mode of CFRP single and double hat shaped structural member under the axial static collapse test. The CFRP single and double hat shaped structural members stacked at different angles (${\pm}15^{\circ}$, ${\pm}45^{\circ}$, ${\pm}90^{\circ}$, $90^{\circ}/0^{\circ}$ and $0^{\circ}/90^{\circ}$ where the direction on $0^{\circ}$ coincides with the axis of the member). The axial static collapse tests were carried out for each member. Collapse mode and energy absorption characteristics of the each member were analyzed.

Improved capacity spectrum method with inelastic displacement ratio considering higher mode effects

  • Han, Sang Whan;Ha, Sung Jin;Moon, Ki Hoon;Shin, Myoungsu
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.587-607
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.

A Study on the Bending Collapse Analysis and Test of Al Extrusion Members (알루미늄 압출부재의 굽힘붕괴 해석 및 실험에 관한연구)

  • Kang, Shin-You;Seo, Sung-Soo
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.213-218
    • /
    • 1997
  • This study is concerned with characteristics of bending collapse of aluminum members with multi-cell section. Aluminum is light so it is compatible of being used for vehicle structures members. Bending collpase behaviors of aluminum members with multi-cell section are very complex and tension failure mode are occured in experiment. In this paper, the aluminum members are modeled to be able to represent the tension failure mode and, characteristics of bending collapse of aluminum members with multi-cell section by experimental method are compared with the results of PAM-CRASH.

  • PDF

Collapse Characteristics of CFRP Hat Shaped members According to Variation of Interface Numbers under the Hygrothermal Environment (고온.고습 환경 하에서의 계면수 변화에 따른 CFRP모자형 단면 부재의 압궤특성)

  • Yang, Yong-Jun;Cha, Cheon-Seok;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.241-247
    • /
    • 2009
  • It is important to satisfy the requirements and standards for the protections of passengers in a car accident. There are lots of studies on the crushing energy absorption of a structure members in automobiles. We have studied to investigate collapse characteristics and moisture absorption movements of CFRP(Carbon Fiber Reinforced Plastics) hat shaped sectional members when CFRP laminates are under the hygrothermal environment. In particular, the absorbed energy, mean collapse load and deformation mode were analyzed for side members which absorbed most of the collision energy. Variation of CFRP interlaminar numbers is important to increase the energy absorption capability. Therefore we have made a static collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed.

  • PDF

Optimal Plastic Design of Planar Frames (평면(平面) Frame의 최적소성설계(最適塑性設計))

  • S.J.,Yim;S.H.,Hwang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.2
    • /
    • pp.1-10
    • /
    • 1980
  • The optimal plastic design of framed structures has been treated as the minimum weight design while satisfying the limit equilibrium condition that the structure may not fail in any of the all possible collapse modes before the specified design ultimate load is reached. Conventional optimum frame designs assume that a continuous spectrum of member size is available. In fact, the vailable sections merely consist of a finite range of discrete member sizes. Optimum frame design using discrete sections has been performed by adopting the plastic collapse theory and using the Complex Method of Box. This study has presented an iterative approach to the optimal plastic design of plane structures that involves the performance of a series of minimum weight design where the limit equilibrium equation pertaining to the critical collapse mode is added to the constraint set for the next design. The critical collapse mode is found by the collapse load analysis that is formulated as a linear programming problem. This area of research is currently being studied. This study would be applied and extended to design the larger and more complex framed structures.

  • PDF

Collapse Characteristics of CFRP Hat Shaped Members under the Hygrothermal Environment According to Stacking Angle (열습환경 하에서의 적층각도 변화에 따른 CFRP 모자형 단면부재의 압궤특성)

  • Yang, Yong-Jun;Yang, In-Young;Sim, Jae-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.507-513
    • /
    • 2009
  • It is important to satisfy the requirements and standards for the protections of passengers in a car accident. There are lots of studies on the crushing energy absorption of structure members in automobiles. We have investigated collapse characteristics and moisture absorption movements of CFRP(Carbon Fiber Reinforced Plastics) hat shaped sectional members when CFRP laminates are under the hygrothermal environment. The absorbed energy, mean collapse load and deformation mode were analyzed for side members which absorbed most of the collision energy. Therefore we have made a static collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed specimen.

  • PDF

A Study on the Static Collapse Characteristics of CFRP Side Member for Vehicle (차체구조용 CFRP 사이드부재의 정적 압궤특성에 관한 연구)

  • Lee, Kil-Sung;Yang, In-Young
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.83-86
    • /
    • 2005
  • The front-end side members of automobiles, such as the hat-shaped section member, absorb most of the energy during the front-end collision. The side members absorb more energy in collision if they have higher strength and stiffness, and stable folding capacity (local buckling). Using the above characteristics on energy absorption, vehicle should be designed light-weight to improve fuel combustion ratio and reduce exhaust gas. Because of their specific strength and stiffness, CFRP are currently being considered for many structural (aerospace vehicle, automobiles, trains and ships) applications due to their potential for reducing structural weight. Although CFRP members exhibit collapse modes that are significantly different from the collapse modes of metallic materials, numerous studies have shown that CFRP members can be efficient energy absorbing materials. In this study, the CFRP side members were manufactured using a uni-directional prepreg sheet of carbon/Epoxy and axial static collapse tests were performed for the members. The collapse mode and the energy absorption capability of the members were analyzed under the static load.

  • PDF

A Study on the Collapse Characteristics of Al/CFRP Square Structural Member for Light Weight (경량화용 Al/CFRP 사각 구조부재의 압궤 특성에 관한 연구)

  • Hwang, Woo-Chae;Sim, Jae-Ki;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.219-224
    • /
    • 2011
  • Aluminum or CFRP is representative one of the lightweight materials. Collapse behavior of Al/CFRP square structural member was evaluated in this study based on the respective collapse behavior of aluminum and CFRP member. Al/CFRP square structural members were manufactured by wrapping CFRP prepreg sheets outside the aluminum hollow members in the autoclave. Because the CFRP is an anisotropic material with mechanical properties, The Al/CFRP square structural members stacked at different angles(${\pm}15^{\circ}$, ${\pm}45^{\circ}$, ${\pm}90^{\circ}$, $90^{\circ}/0^{\circ}$ and $0^{\circ}/90^{\circ}$ where the direction on $0^{\circ}$ coincides with the axis of the member) and interface numbers(2, 3, 4, 6 and 7). The axial impact collapse tests were carried out for each section members. Collapse mode and energy absorption characteristics of the each member were analyzed.

A new optimized performance-based methodology for seismic collapse capacity assessment of moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan;Garakaninezhad, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.667-678
    • /
    • 2022
  • Moment-resisting frames (MRFs) are among the most conventional steel structures for mid-rise buildings in many earthquake-prone cities. Here, a simplified performance-based methodology is proposed for the seismic collapse capacity assessment of these buildings. This method employs a novel multi-mode pushover analysis to determine the engineering demand parameters (EDPs) of the regular steel MRFs up to the collapse prevention (CP) performance level. The modal combination coefficients used in the proposed pushover analysis, are obtained from two metaheuristic optimization algorithms and a fitting procedure. The design variables for the optimization process are the inter-story drift ratio profiles resulting from the multi-mode pushover analyses, and the objective values are the outcomes of the incremental dynamic analysis (IDA). Here, the collapse capacity of the structures is assessed in three to five steps, using a modified IDA procedure. A series of regular mid-rise steel MRFs are selected and analyzed to calculate the modal combination coefficients and to validate the proposed approach. The new methodology is verified against the current existing approaches. This comparison shows that the suggested method more accurately evaluates the EDPs and the collapse capacity of the regular MRFs in a robust and easy to implement way.