• Title/Summary/Keyword: Mode Collapse

Search Result 194, Processing Time 0.029 seconds

The Experimental Study on the Collapse Mechanism of CFRP Composite Tubes (CFRP 복합재 튜브의 압괴메카니즘에 관한 실험적 연구)

  • 김영남;차천석;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.149-157
    • /
    • 2002
  • This paper is to investigate collapse mechanisms of CFRP(Carbon Fiber Reinforced Plastics)composite tubes and to evaluate collapse characteristics on the change of interlaiminar number and ply orientation angle of outer under static and impact axial compression loads. When a CFRP composite tube is crushed, static/impact energy is consumed by friction between the loading plate and the splayed fronds of the tube, by fracture of the fibers, matrix and their interface. These are associated with the energy absorption capability. In general, CFRP tube with 6 interlaminar number(C-type), absorbed more energy than other tubes(A, B, D-types). The maximum collapse load seemed to increase as the interlaminar number of such tubes increases. The collapse mode depended upon orientation angle of outer of CFRP tubes and loading status(static/impact). Typical collapse modes of CFRP tubes are wedge collapse mode, splaying collapse mode and fragmentation collapse mode. The wedge collapse mode was shown in case of CFRP tubes with 0° orientation angle of outer under static and impact loadings. The splaying collapse mode was shown in only case of CFRP tubes with 90°orientation angle of outer under static loadings, however in Impact tests those were collapsed in fragmentation mode .

A Study on the Energy Absorption Characteristics and Fracture Mode of CFRP Laminate Members under Axial Compression (축압축을 받는 CFRP 적층부재의 에너지흡수특성과 파괴모드에 관한 연구)

  • 김정호;정회범;전형주
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.7-12
    • /
    • 2002
  • The object of this paper is to investigate collapse characteristics of CF/Epoxy(Carbon Fiber/Epoxy resin) composite tubes on the change of interlaminar number and fiber orientation angle of outer and to evaluate reappearance of collapse characteristics on the change of tension strength of fibers under static and impact axial compression loads. When a CF/Epoxy composite tube is mushed, static/impact energy is consumed by friction between the loading plate and the splayed fiends of the tube, by fracture of the fibers, matrix and their interface. In general, CF/Epoxy tube with 6 interlaminar number(C-type) absorbed more energy than other tubes(A, B, D-types). The maximum collapse load seemed to increase as the interlaminar number of such tubes increases. The collapse mode depended upon orientation angle of outer of CF/Epoxy tubes and loading status(static/impact). Typical collapse modes of CF/Epoxy tubes are wedge collapse mode, splaying collapse mode and fragmentation collapse mode. The wedge collapse mode was shorn in case of CF/Epoxy tubes with 0$^{\circ}$ orientation angle of outer under static and impact loadings. The splaying collapse mode was shown in only case of CF/Epoxy tubes with 90$^{\circ}$ orientation angie or outer under static loadings, however in impact tests those were collapsed in fragmentation mode. So that CF/Epoxy tube with 6 interlaminar number and 90$^{\circ}$ outer orientation angle presented to the optimal collapse characteristics.

Impact Collapse Characteristics of CF/Epoxy Composite Tubes for Light-Weights

  • Kim, Young-Nam;Hwang, Jae-Jung;Baek, Kyung-Yun;Cha, Cheon-Seok;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.48-56
    • /
    • 2003
  • This paper investigates the collapse characteristics of CF/Epoxy composite tubes subjected to axial loads as changing interlaminar number and outer ply orientation angle. The tubes are aften used for automobiles, aerospace vehicles, trains, ships, and elevators. We have performed static and dynamic impact collapse tests by a way of building impact test machine with vertical air compression. It is fanad that CF/Epoxy tube of the 6 interlaminar number (C-type) with 90$^{\circ}$ outer orientation angle and trigger absorbed more energy than the other tubes (A. B and D-types). Also collapse mode depended upon outer orientation angle of CF/Epoxy tubes and loading type as well; typical collapse modes of CF/Epoxy tubes are wedged, splayed and fragmentcl.

The characteristics of bending collapse of aluminum/GFRP hybrid tube (알루미늄/GFRP 혼성튜브의 굽힘붕괴 특성)

  • 송민철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.84-87
    • /
    • 2000
  • Square tubes used for vehicle structure components have an important role on keeping its stiffness and preserving occupant safety in vehicle collision and rollover in which it experience axial collapse, bending collapse or both. Bending collapse, which absorbs kinetic energy of the impact and retains a survival space for the occupant, is a dominant failure mode in oblique collision and rollover. Thus, in this paper, the bending collapse characteristics such as the maximum bending moment and energy absorption capacity of the square tube replaced by light-weight material were evaluated and presented. The bending test of cantilever tubes which were fabricated with aluminum, GFRP and aluminum/ GFRP hybrid by co-curing process was performed. Then the maximum bending moment and the energy absorption capacity from the moment-angle curve were evaluated. Based on the test results, it was found that aluminum/ GFRP hybrid tube can show better specific energy absorption capacity compared to the pure aluminum or GFRP tube and can convert unstable collapse mode which may occur in pure GFRP tube to stable collapse mode like a aluminum tube in which plastic hinge is developed.

  • PDF

Influence of dimensional ratio on collapse characteristics for the thin-walled structures of light weight (경량화용 박육부재의 형상비가 압궤특성에 미치는 영향)

  • 정종안;김정호;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.11-23
    • /
    • 1998
  • In this study, collapse test of thin-walled structure is performed under axially quasi-static and impact load in collapse characteristic to develop the optimum structural member for a light-oriented automobile. Furthermore, the energy-absorbing capacity is observed according to the variety of configuration(circular, square), aspect ratio in aluminum specimen to obtain basic data for the improved member of vehicle. In both quasi-static and impact collapse test, Al circular specimens collapse, in general, with axisymmetric mode in case of thin thickness while collapse with non-axisynmetric mode according to the thickness increase. For Al rectangular specimens, they collapse with axisymmetric mode in case of thin thickness, with mixed collapse mode according to the increase of thickness. In terms of initial max. load, Al square specimen turns out the best member among specimens, and then Al square, circular and circular with large scaling ratio, respectively. In case of quasi-static compression test, the absorbed energy per unit volume and mass shows higher in Al circular specimen, and then Al square, circular with large scaling ratio, respectively, according to shape ratio the absorbed energy per unit volume and mass in case of max. impact compression load is higher than that of static load. But the absorbed energy per unit volume and mass shows that Al circular specimen is the best member. Especially, unlike max. compression loan, the absorbed energy per unit volume and mass in impact test turns out the low value.

  • PDF

An Experimental Study on the Axial Collapse Characteristics of Hat and Double Hat Shaped Section Members at Various Velocities

  • Cha, Cheon-Seok;Chung, Jin-Oh;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.924-932
    • /
    • 2004
  • In this study, the axial collapse tests were performed under either static (or quasi-static) or impact loads with several collapse velocities based on the expectation that para-closed sections of the front-end side members (spot welded hat and double hat shaped section members) would show quite different collapse characteristics from those for seamless section. The test results showed that both of the hat and double hat shaped section members failed in the stable sequential collapse mode in the static or quasi-static collapse tests, while the double hat shaped section members underwent the unstable collapse mode especially when the impact velocity is high. The mean collapse loads in the hat shaped section members increase with collapse velocity for all the cases of the static, quasi-static, and impact collapse tests. In the double hat shaped section members, however, the mean collapse loads decrease with increase in collapse velocity in the impact tests.

Mitigating Mode Collapse using Multiple GANs Training System (모드 붕괴를 완화하기 위한 다중 GANs 훈련 시스템)

  • Joo Yong Shim;Jean Seong Bjorn Choe;Jong-Kook Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.10
    • /
    • pp.497-504
    • /
    • 2024
  • Generative Adversarial Networks (GANs) are typically described as a two-player game between a generator and a discriminator, where the generator aims to produce realistic data, and the discriminator tries to distinguish between real and generated data. However, this setup often leads to mode collapse, where the generator produces limited variations in the data, failing to capture the full range of the target data distribution. This paper proposes a new training system to mitigate the mode collapse problem. Specifically, it extends the traditional two-player game of GANs into a multi-player game and introduces a peer-evaluation method to effectively train multiple GANs. In the peer-evaluation process, the generated samples from each GANs are evaluated by the other players. This provides external feedback, serving as an additional standard that helps GANs recognize mode failure. This cooperative yet competitive training method encourages the generators to explore and capture a broader range of the data distribution, mitigating mode collapse problem. This paper explains the detailed algorithm for peer-evaluation based multi-GANs training and validates the performance through experiments.

Effect of Bend Angle on the Collapse Behavior of Locally Wall Thinned Pipe Bends (감육 곡관의 붕괴거동에 미치는 곡관 굽힘각의 영향)

  • Na Man-Gyun;Kim Jin-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1269-1275
    • /
    • 2006
  • The purpose of this study is to investigate the effect of bend angle on the collapse behavior of locally wall thinned pipe bends. For this purpose, the present study performed three-dimensional finite element analysis on the 30-, 60-, and 90-degree pipe bends with local wall thinning at the center of intrados, extrados, and crown, and evaluated the collapse moment for different thinning dimensions under closing- and opening-mode bending with a constant internal pressure. The results showed that, for intrados and extrados wall thinning, the reduction in the collapse moment due to local wall thinning became significant with decreasing bend angle of pipe bends. This effect of bend angle was enhanced with increasing thinning dimensions, and it was clearer fur opening-mode bending than for closing-mode bending. For crown wall thinning, however, the effect of bend angle was unclear and was less sensitive to the change of wall thinning shapes.

Axial Impact Collapse Analysis of Spot Welded Hat and Double-hat Shaped Section Members Using an Explicit Finite Element Code

  • Cha, Cheon-Seok;Kim, Young-Nam;Kim, Sun-Kyu;Im, Kwang-Hee;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.32-38
    • /
    • 2002
  • The purpose of this study is to analyze the collapse characteristics of widely used spot welded section members (hat and double hat section, nembers of vehicles) which possess the greatest energy absorbing capacity In an axial impact collapse. This study also suggests how the collapse load and deformation mode are obtained under impact. In the program system presented in this study, an explicit finite element code, LS-DY7A3D, is adopted for simulating complicated collapse behavior of the hat and double hat shaped section members with respect to section dimensions and spot weld pitches. Comparing the results with experiments, the simulation has been verified under a velocity of 7.19 m/sec (impact energy of 1034J)

Collapse Mechanism of Ordinary RC Shear Wall-Frame Buildings Considering Shear Failure Mode (전단파괴모드를 고려한 철근콘크리트 보통전단벽-골조 건물의 붕괴메커니즘)

  • Chu, Yurim;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Most commercial buildings among existing RC buildings in Korea have a multi-story wall-frame structure where RC shear wall is commonly used as its core at stairways or elevators. The members of the existing middle and low-rise wall-frame buildings are likely arranged in ordinary details considering building occupancy, and the importance and difficulty of member design. This is because there are few limitations, considerations, and financial burdens on the code for designing members with ordinary details. Compared with the intermediate or unique details, the ductility and overstrength are insufficient. Furthermore, the behavior of the member can be shear-dominated. Since shear failure in vertical members can cause a collapse of the entire structure, nonlinear characteristics such as shear strength and stiffness deterioration should be adequately reflected in the analysis model. With this background, an 8-story RC wall-frame building was designed as a building frame system with ordinary shear walls, and the effect of reflecting the shear failure mode of columns and walls on the collapse mechanism was investigated. As a result, the shear failure mode effect on the collapse mechanism was evident in walls, not columns. Consequently, it is recommended that the shear behavior characteristics of walls are explicitly considered in the analysis of wall-frame buildings with ordinary details.