• Title/Summary/Keyword: Modal Transformation

Search Result 66, Processing Time 0.024 seconds

A controller design using modal decomposition of matrix pencil

  • Shibasato, Koki;Shiotsuki, Tetsuo;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.492-492
    • /
    • 2000
  • This paper proposes LQ optimal controller design method based on the modal decomposition. Here, the design problem of linear time-invariant systems is considered by using pencil model. The mathematical model based on matrix pencil is one of the most general representation of the system. By adding some conditions the model can be reduced to traditional system models. In pencil model, the state feedback is considered as an algebraic constraint between the state variable and the control input variable. The algebraic constraint on pencil model is called purely static mode, and is included in infinite mode. Therefore, the information of the constant gain controller is included in the purely static mode of the augmented system which consists of the plant and the control conditions. We pay attention to the coordinate transformation matrix, and LQ optimal controller is derived from the algebraic constraint of the internal variable. The proposed method is applied to the numerical examples, and the results are verified.

  • PDF

Inverse Dynamic Analysis of Flexible Multibody Systems with Closed-Loops

  • Lee, Byung-Hoon;Lee, Shi-Bok;Jeong, Weui-Bong;Yoo, Wan-Suk;Yang, Jin-Saeng
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.693-698
    • /
    • 2001
  • The analysis of actuating forces (or torques) and joint reaction forces (or moments) are essential to determine the capacity of actuators, to control the system and to design the components. This paper presents an inverse dynamic analysis algorithm for flexible multibody systems with closed-loops in the relative joint coordinate space. The joint reaction forces are analyzed in Cartesian coordinate space using the inverse velocity transformation technique. The joint coordinates and the deformation modal coordinates are used as the generalized coordinates of a flexible multibody system. The algorithm is verified through the analysis of a slider-crank mechanism.

  • PDF

Innovations as an Option to Increase the Market Share of Rail Freight Transport in Europe

  • Wiegmans, Bart W.
    • International Journal of Railway
    • /
    • v.2 no.2
    • /
    • pp.80-92
    • /
    • 2009
  • Successful market adoption of rail freight transport innovations that might offer opportunities for market share increase is the focus of this paper. Firstly, seen from a theoretical point of view, it is not incremental innovations but radical organizational and transformation innovations that are likely to increase the market share of rail freight transport. Secondly, the particular inovations that offer some success potential for market adoption are: dedicated infrastructure, the fixed timetable, locomotive upgrades, and INTERFACE. Thirdly, unfortunately, the opportunities to increase the market share of rail freight transport appear to be limited.

  • PDF

Structural Modal Analysis Using Substructure Hybrid Interface Modes (혼합경계의 부분구조 모드를 이용한 구조물의 모드해석)

  • 김형근;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1138-1149
    • /
    • 1993
  • A new mode synthesis method using Lagrange multipliers and substructure hybrid interface modes is presented. Substruture governing equations of motion are derived using Lagrange equations and the constraints of geometric compatibility between the substructures are treated with Lagrange multipliers. Fixed, free, and loaded interface modes can be employed for the modal bases of each substructure. In cases of the fixed and loaded interface modes, two successive modal transformation relations are used. Compared with the conventional mode synthesis methods, the suggested method does not construct the equations of motion of the coupled structure and the final characteristic equation becomes a polynomial. Only modal parameters of each substructure and geometric compatibility conditions are needed. The suggested method is applied to a simple lumped mass model and parametric study is performed.

Modal Analysis of the Bell Type Shell with Thickness and Asymmetric Effects (鐘形셀의 두께變化 및 非對稱效果에 따른 振動모우드 解析에 관한 硏究)

  • 정석주;공창덕;염영하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.383-391
    • /
    • 1986
  • Mode shapes and natural frequencies of the bell type shell are analyzed numerically by the finite element method. The impulse hammer method and the Fast Fourier Transform analyzer are used for the experimental test. All types of mode shapes are expressed by the computer graphics. Numerical solutions are good agreement with the experimental results. The sustaining sound of the typical bell-type shell depend upon the first flexural mode (0-2 mode) and the second flexural mode (0-3 mode), and their mode shapes are independent upon thickness Dangjwas, holes, and added mass effects. Asymmetric effects by Dangjwas, holes and added mass give rise to beat frequencies, and the added mass is found to be most effective.

Structure-Control Combined Design with Structure Intensity

  • PARK JUNG-HYEN;KIM SOON HO
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.57-65
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

Structure-Control Combined Design with Structure Intensity

  • Park, Jung-Hyen;Kim, Soon-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.60-68
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

  • PDF

Dynamic Deformation Estimation of Structures Using Fiber Optic Strain Sensors (광섬유 변형률 센서를 이용한 구조물의 동적 변형 추정)

  • Kang, Lae-Hyong;Kim, Dae-Kwan;Rapp, Stephan;Baier, Horst;Han, Jae-Hung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1279-1285
    • /
    • 2006
  • In this study, structural deformation estimation using displacement-strain relationship is investigated. When displacements of a structure cannot be measured directly, estimation of displacements using strain data can be an alternative solution. Additionally, the deformation of the whole structure as well as the displacement at the point of interest can be estimated. Strain signals are obtained front Fiber Bragg Grating(FBG) sensors that have an excellent multiplexing ability. Some experiments were performed on two beams and a plate to which FBG sensors were attached in the laboratory. Strain signals from FBG sensors along a single strand of optical fiber were obtained through wavelength division multiplexing(WDM) method. The beams and the plate structures were subjected to various loading conditions, and deformed shapes were reconstructed from the displacement-strain transformation relationship. The results show good agreements with those measured directly from laser sensors. Moreover, the whole structural shapes of the beams and the plate were estimated using only some strain sensors.

Fault Location for Incomplete-Journey Double-Circuit Transmission Lines on Same Tower Based on Identification of Fault Branch

  • Wang, Shoupeng;Zhao, Dongmei;Shang, Liqun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1754-1763
    • /
    • 2017
  • This paper analyses the characteristics of incomplete-journey double-circuit transmission lines on the same tower formed by single-circuit lines and double-circuit lines, and then presents a fault location algorithm based on identification of fault branch. With the relationship between the three-phase system and the double-circuit line system, a phase-mode transformation matrix for double-circuit lines can be derived. Based on the derived matrix, the double-circuit lines with faults can be decoupled, and then the fault location for an incomplete-journey double-circuit line is achieved by using modal components in the mode domain. The algorithm is divided into two steps. Firstly, the fault branch is identified by comparing the relationships of voltage amplitudes at the bonding point. Then the fault location, on the basis of the identification result, is calculated by using a two-terminal method, and only the fault distance of the actual fault branch can be obtained. There is no limit on synchronization of each terminal sampling data. The results of ATP-EMTP simulation show that the proposed algorithm can be applied within the entire line and can accurately locate faults in different fault types, fault resistances, and fault distances.

An Improved Poincaré-like Carleman Linearization Approach for Power System Nonlinear Analysis

  • Wang, Zhou-Qiang;Huang, Qi;Zhang, Chang-Hua
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.271-281
    • /
    • 2013
  • In order to improve the performance of analysis, it is important to consider the nonlinearity in power system. The Carleman embedding technique (linearization procedure) provides an effective approach in reduction of nonlinear systems. In the approach, a group of differential equations in which the state variables are formed by the original state variables and the vector monomials one can build with products of positive integer powers of them, is constructed. In traditional Carleman linearization technique, the tensor matrix is truncated to form a square matrix, and then regular linear system theory is used to solve the truncated system directly. However, it is found that part of nonlinear information is neglected when truncating the Carleman model. This paper proposes a new approach to solve the problem, by combining the Poincar$\acute{e}$ transformation with the Carleman linearization. Case studies are presented to verify the proposed method. Modal analysis shows that, with traditional Carleman linearization, the calculated contribution factors are not symmetrical, while such problems are avoided in the improved approach.